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Abstract. Architecting Internet of Things (IoT) systems is very chal-
lenging due to the heterogeneity of connected objects and devices, and
their dynamic variabilities such as mobility and availability. The com-
plexity of this scenario is exacerbated when considering Quality-of-Service
(QoS) constraints. Indeed, reasoning about multiple quality attributes,
e.g., power consumption and response time, makes the management of
IoT systems even more difficult since it is necessary to jointly evaluate
multiple system characteristics. The focus of this paper is on modelling
and analysing QoS-related characteristics in IoT architectures. To this
end, we leverage on the concept of Emergent Architectures (EAs), i.e.,
a set of things temporarily cooperating to achieve a given goal, by in-
tertwining EAs with QoS-related constraints. Our approach provides the
automated formation of the most suitable EAs by means of a QoS-based
optimisation problem. We developed an IoT case study and experimental
results demonstrate the effectiveness of the proposed approach.

1 Introduction

The Internet of Things (IoT) refers to a complex network of interactive things,
i.e., heterogeneous tags, sensors, actuators, objects, and devices that dynamically
cooperate [1–3]. The IoT is exploited for the development of many applications
spanning multiple domains, such as natural disasters, industrial automation,
smart homes [4]. The IoT attracted the attention of companies, governments,
and citizens, and has given rise to research in both industry and academia [5]. A
recent estimation of the IoT market in the upcoming years has been quantified
of being $1.7 trillion including nearly 50 billion things [6].

Nonetheless, building software architectures that support the execution of
IoT systems brings new challenges, in fact non trivial choices are required when
heterogeneous objects and devices must dynamically cooperate. The IoT environ-
ment changes dynamically, e.g., due to devices’ availability or the user’s mobility.
Given the uncertainty in the operational environment (e.g., faulty things, capa-
bilities appearing/disappearing at any moment), and the high diversity of things
dynamically available in different and often unknown places, it is not feasible to



define a priori a unique software architecture. Moreover, communicating things
may be also potentially resource-constrained. The peculiarity of the IoT domain
is that services may show QoS-based characteristics that are platform-specific
(e.g., the sensing of light level may be offered by multiple sensor devices, each
of them showing a different QoS) and time-varying (e.g., actuators may be con-
strained by the battery level that changes at runtime), and this heterogeneity
makes more complex the QoS-based evaluation of IoT software architectures.
This paves the way for considering Quality-of-Service (QoS) concerns in IoT as
first class citizens.

In the literature, several QoS-based methodologies have been proposed at
various layers of the IoT architecture and different QoS factors, such as perfor-
mance and reliability, have been considered [7]. However, there is still need for
models, metrics, and tools that facilitate the interaction with the dynamically
available things, thus to satisfy QoS-related goals, besides the functional ones.
This paper focuses on the challenge of specifying IoT architectural models in-
cluding QoS aspects and providing support for the automatic formation of the
Emergent Architectures (EAs). EAs stem from Emergent Configurations (ECs),
i.e., a set of things that connect and cooperate temporarily through their func-
tionalities, applications, and services, to achieve a user goal [8, 9]. Things are
possibly smart connected objects (e.g., curtains) and devices (e.g., temperature
sensors). More specifically, we are interested to derive the most suitable EAs,
i.e., an optimal set of connected things cooperating to jointly address functional
and extra-functional requirements.

In our previous work [10], we make use of Domain Objects (DOs), i.e., a
service-based formalism [11], for forming and enacting ECs in the IoT domain.
However, despite its proved effectiveness in the dynamic and automatic for-
mation of ECs, we experienced improper usage of resources, even reflecting to
end-users unsatisfaction. To tackle these issues, in this paper we extend both the
DOs formalism and the approach in [10] where purely functional requirements
can be specified, and QoS-related concerns were not considered at all. The spe-
cific contributions of this paper are: (i) a model-based approach that embeds
the specification of QoS-related properties at the level of things; (ii) the auto-
mated formation of the most suitable EAs in the IoT relying on the selection of
QoS-based optimal devices; (iii) a case study demonstrating the feasibility and
effectiveness of the proposed approach.

The remainder of this paper is organised as follows. Section 2 describes an IoT
scenario that we use throughout the paper, and some background information.
Section 3 illustrates our approach. Section 4 presents the case study, explains
experimental results, and discusses threats to validity. Section 5 reports related
work, and Section 6 concludes the paper pointing out future research directions.

2 Motivating example and foundations

In this section we give a motivating scenario that will guide us through the paper
and we describe some relevant background notions.



2.1 Smart Light scenario

In this section we describe the IoT Smart Light (SL) scenario, where things
cooperate to achieve a predefined light level in a lecture room. This scenario
extends the one described in [10] by further including and managing extra-
functional requirements. Consider, for instance, a university campus made by
different buildings hosting diverse types of rooms, e.g., libraries, dormitories,
classrooms, offices. Each room is equipped with several IoT things, i.e., light
sensors, curtains, and lamps. The things, along with their functionalities, are
configured to be controllable via a mobile application allowing authorized users
to increase/decrease the light level while moving in different rooms, based on
their needs. For instance, in a lecture room, the lecturer can decide to decrease
the light level when giving a presentation through a projector or, to the contrary,
to increase it when using the blackboard. As opposite, in a dormitory room, a
student can decide to have a higher light level when studying and a lower one
when resting. A possible way to achieve such goals is to dynamically identify an
EA made, for instance, by the user’s smartphone, a light sensor, and available
curtain(s) and lamp(s). The selected light sensor measures the current light level
in the room, and subsequently the lamps are turned on/off, and the curtains can
be opened or closed.

Besides fulfilling the functional goals of this scenario (e.g., adjusting the light
level), the mobile application committer and the final users are also interested in
fulfilling extra-functional requirements. For instance, the committer may want
to minimise the power consumption of all the devices installed in the campus,
i.e., to positively impact on the campus energy bill, while guaranteeing users
satisfaction. This means that users can set their own preferences modifying the
default settings. Specifically: (i) light sensors display different sensing accuracy
and users may require a certain accuracy level to get trustable estimations; (ii)
curtains expose a time required for opening/closing them, and users may be
interested in minimising it; (iii) lamps contribute with different light intensities,
and users may select the ones that better match with the required light level.

2.2 Background

This work builds upon an existing approach called IoT-FED (Forming and en-
acting Emergent configurations through Domain objects in the IoT) [10] that
exploits the Domain Object (DO) model, i.e., the building block of a design for
adaptation [11].

Domain Objects. DOs allow the definition of independent and heteroge-
neous things/services in a uniform way. This means that developers can work
at an abstract level without dealing with the heterogeneity of things and their
communication protocols. Since the actual system can vary in different execution
contexts, as it can be constituted by disparate things (e.g., sensors, actuators,
smartphones) dynamically available, the DO model supports the systems real-
ization at runtime, when the execution context is known.



To model things, developers wrap them as DOs. This task is done only una
tantum, i.e., when a new device type/brand is available. Each DO implements its
own behavior (i.e., the core process), which is meant to model its capability (e.g.,
the sensing capability of a sensor). At the same time, for its nominal execution, a
DO can optionally require capabilities provided by other DOs (e.g., the lamp and
curtain actuating capabilities are externally required by the SL application). In
addition, it exposes one or more fragments (e.g., the sense light level fragment)
describing offered services that can be dynamically discovered and used by other
DOs. Both core process and fragments are modelled as processes, by means of
the Adaptive Pervasive Flows Language (APFL) [12].

The dynamic cooperation among DOs is performed by exploiting a refine-
ment mechanism. At design time, APFL allows the partial specification of the
expected behaviour of a DO through abstract activities, i.e., activities that the
DO does not implement itself; they are defined only in terms of a goal labelling
them (e.g., sense the light) and they represent open points in DOs’ processes
and fragments. At runtime, the refinement mechanism makes abstract activi-
ties refined according to the (composition of) fragments offered by other DOs,
whose execution leads to achieve the abstract activity’s goal. This enables a
chain of refinements, as will be later discussed (see Figure 5). We adopt a re-
finement mechanism that makes use of advanced techniques for the dynamic
and incremental service composition, and it is based on Artificial Intelligence
(AI) planning [13]. For further details on DOs, we refer to [14] describing the
prototype of a travel assistant application developed by using DOs technologies.

IoT-FED. The IoT-FED approach supports the formation and enactment
of ECs by means of the DOs technologies. Given the user goal type (e.g., adjust
light level) and the goal spatial boundaries, such as the location where the EC
must be formed and enacted (e.g., the lecture room), the execution starts (e.g.,
from the SL application’s DO). If existing, the EC is made up by the set of things
whose corresponding DOs have been involved in the refinement process of all the
encountered abstract activities, through the selection of their fragments.

Fig. 1: Overview of our framework.

Figure 1 shows an ab-
stract framework [10] where
the shaded box highlights
the newly defined compo-
nent for QoS-related con-
cerns, whereas the boxes with
the striped pattern highlight
the components that have
been modified to handle QoS
aspects. In the following we
describe the main components.

The Goal Manager is responsible for parsing the user goal and starting the
EC formation process. It has three sub-components: (i) the Process Loader, re-
sponsible for specifying the user goal type and the spatial boundaries, and for
loading the DO process corresponding to the specified goal type; (ii) the Opti-



mization Solver (that will be detailed in Section 3.1); (iii) the Planner respon-
sible for the refinement of abstract activities in the loaded process. The Things
Manager is responsible for managing available IoT things and DOs. It answers
queries about available IoT things, their capabilities and locations; dynamically
instantiates needed DOs, and handles co-relations among them. The Enactment
Engine is mainly responsible for enacting the ECs. It (i) forms and enacts the
ECs; (ii) sends instructions to IoT things (e.g., get sensor readings) through the
Things Manager; (iii) handles the injection of the plans received by the Planner
in place of the abstract activities and (iv) executes the final refined process that
achieves the user goal. The Context Manager is responsible for maintaining the
system knowledge. It retrieves data from the knowledge base (KB), parses re-
ceived context from the Enactment Engine (e.g., new things states), and updates
the KB. The Knowledge Base holds the internal system knowledge and includes
repositories storing things operational states (e.g., if lights are turned on or off),
the designed DOs, and the associations among things, DOs and corresponding
capabilities. The IoT Services component enables the management and interac-
tion with things, and it relies on the Amazon AWS-IoT cloud platform3.

To make IoT things and services available in IoT-FED, a developer needs to
do two main operations: (i) register things in the AWS-IoT platform; (ii) model
things, services and applications as DOs. The REST endpoints generated by the
platform are invoked in the DOs processes activities.

3 QoS-based approach

Our approach provides mechanisms for determining the near-optimal IoT-EAs
that jointly satisfy functional and extra-functional requirements. In this section
we use the SL scenario described in Section 2.1, where things cooperate for
reaching the goal to set a predefined light level in a lecture room.

3.1 Overview of the approach

This section describes the extensions made to the IoT-FED approach to enable
the automatic QoS-based formation of EAs. To allow developers to specify QoS-
related characteristics of things, we extended the Domain Objects formalism.
This extension clearly impacts on the modelling phase of domain objects (see
the shaded box in Figure 2).

Register things 
in the IoT 
platform

Store the models 
in the  

repositories

Modelling phase

Model things, 
services and 
application as 

domain objects

Model the operational 
environment of the 

target system 
(capabilities)

Fig. 2: IoT-FED extended guideline.

The specification of QoS-related characteristics, indeed, is performed at the
level of DOs. In particular, each thing is associated to an arbitrary number

3 https://aws.amazon.com/it/iot



of metrics inherited from its producer. Thus, we enhanced the specification of
DOs (e.g., those representing real world things in the environment, value-added
services or user applications) by adding QoS-related attributes.

Figure 3 reports an example of a domain-specific sensor (i.e., the Sensmitter4)
expressed as a .xml file representing the corresponding light sensor’s DO. In
particular, it shows that the DO’s state also contains QoS-related attributes
(see lines 16-24 of Figure 3), besides state variables. Specifically, regarding the

1<?xml version ="1.0" encoding ="UTF -8"?>
2<tns:domainObject name="SensmitterLightSensor" xmlns:tns="http ://.../">
3
4 <tns:domainKnowledge >
5 <tns:internalDomainProperty name="domainProperties/LightSensing">
6 </tns:internalDomainProperty >
7 </tns:domainKnowledge >
8 <!-- List of state variables -->
9 <tns:state>
10 <tns:stateVariable name="DeviceID" type="string">
11 <tns2:content type="anyType">Sensmitter_435 </tns2:content >
12 </tns:stateVariable >
13 <!-- Other state variables here -->
14
15 <!-- QoS -related attributes -->
16 <tns:QoSAttribute name="PowerConsumption" type="integer">
17 <tns2:content type="anyType">2.5</tns2:content >
18 </tns:QoSAttribute >
19 <tns:QoSAttribute name="SensingAccuracy" type="integer">
20 <tns2:content type="anyType">8</tns2:content >
21 </tns:QoSAttribute >
22 <tns:QoSAttribute name="BatteryLevel" type="integer">
23 <tns2:content type="anyType">100</tns2:content >
24 </tns:QoSAttribute >
25 </tns:state>
26
27 <tns:process name="processes/PROC_SensmitterLightSensor"/>
28 <tns:fragment name="fragments/LS_senseLight"></tns:fragment >
29
30</tns:domainObject >

Fig. 3: Domain object model for the Sensmitter light sensor.

SL scenario with the three categories of used devices, the specification of light
sensors is augmented with three metrics: (i) power consumption (see lines 16-18
of Figure 3), i.e., the energy consumed by sensors to provide measurements on the
light level; (ii) sensing accuracy (see lines 19-21 of Figure 3), i.e., the precision
provided by sensors about their estimations; (iii) battery level (see lines 22-24 of
Figure 3), i.e., the state of the device’s battery that can be dynamically updated.
Lamps and curtains also include the power consumption in their specification,
but differently from sensors, lamps show a lighting level that expresses their
intensities, and curtains show a timing for opening/closing that denotes the
efficiency of such devices. Note that metrics can be expressed in different units for
sensors and actuators of different brands, however such units can be converted to
a common reference unit in the DO model, thus to avoid misleading comparison.

The default setting of extra-functional requirements (i.e., min, max, threshold
value) is enabled by the developers in the setting of the SL application. However,

4 https://www.senssolutions.se/



end-users may have different preferences while using the available things, hence
they can modify such requirements. This is later translated into the QoS-based
optimisation problem that guides the formation of the most suitable EAs.

The aim of our approach is to verify if an EA can be formed to achieve the
given (functional and extra-functional) goal in the specified spatial boundaries.
In particular, this is strictly related to the refinement of abstract activities.
We recall that the refinement process consists of the automated resolution of a
fragments composition problem. It is transformed into a planning problem, and
AI planning-based techniques are used to solve it.

QoS-based refinement

Generate the 
planning 
problem

 QoS-based 
composition 

problem definition

Execute the AI 
planning

Get goal type and 
spatial boundaries

Start user application 
domain object' 

process

Fig. 4: IoT-FED extended process.

In particular, we enhanced the fragments composition problem in such a way
that it also considers the QoS-related characteristics of devices. In Figure 4 we
provide an abstraction of the IoT-FED extended process (see the shaded box
in Figure 4). This way, the generated planning problem considers both extra-
functional requirements and QoS-based characteristics expressed by DOs. In-
deed, the specification of QoS-related characteristics in the DOs, together with
the setting of extra-functional requirements (i.e., min, max, threshold value),
leads to multiple architectural alternatives and trade-off analyses for the selec-
tion of near-optimal EAs. The mentioned QoS-based optimization problem is
defined and solved by the Optimization Solver component (Figure 1).

STEP 2: PLAN FOR G4

Abstract activity

Send / receive /
concrete activities

LEGEND: STEP 1: PLAN FOR G2

Fig. 5: Smart Light execution example.

Figure 5 depicts a simplified example of the SL application execution. The
Smart Light Process denotes the specification of the user application, and it



represents the User Application DO. The QoS-based requirements guide the
refinement of the encountered abstract activities (i.e., Detect Light Level, Set
Light Level). For instance, the refinement of the Set Light Level abstract ac-
tivity (i.e., goal G2 in Figure 5) includes the fragment Handle Devices that is
provided by the Device Manager DO (see Step 1 of Figure 5). If the selected
DO is not instantiated, then such operation is performed by the Things Man-
ager component. The execution of this fragment implies the co-relation between
the two instantiated DOs (i.e., User Application and Device Manager). The set-
tled extra-functional requirements are passed to the Device Manager, see the
QoS input data in the Receive Device Request activity. Subsequently, it will be
considered for the refinement of the Light Actuating (i.e., goal G4 in Figure
5) abstract activity. Eventually, the fragments composition (returned for this
last refinement) is made by two fragments provided by those actuators in the
room whose QoS-related characteristics are compliant with the QoS-based op-
timisation problem (see Step 2 of Figure 5). Specifically, the fragments Lamp
and Curtain Actuating, respectively provided by the Philips Hue Lights5 and
the Stepper Motor6 DOs are selected, composed and injected in place of the
abstract activity they refine.

3.2 Deriving QoS-based optimal IoT-EAs

The QoS-based search for alternative EAs initially deals with the issue of find-
ing a set of devices (D) that implement the functionalities required by the ap-
plication, but also fulfilling the stated requirements. Note that considering the
requirements leads to trade-off analysis that takes into account the dependencies
among the QoS-based properties, thus reducing the solution space. Then, given
this reduced solution space (i.e., a set of devices), it is the planner to look for
the optimal EAs. More formally, the problem can be expressed as follows: Look
for an EAopt derived by an optimal selection of devices Dopt.

To this extent, we defined an optimisation problem. It may also be modified
by adding some constraints, such as costs and further domain-specific charac-
teristics, e.g., the charging level of available devices. In the constrained case, we
assume that there is a cost/restriction associated with each EA for providing a
certain QoS level. In our case study, for example, we can introduce a constraint
regulating the charging level of devices before being selected, e.g., activate lamps
or curtains showing an initial battery level larger than 80%.

The number of different EAs (generated from the Dopt) is conditioned to the
number of sensors and actuators, plus their instances. Since sensors are selected
before looking for actuators, we firstly need to evaluate the search space for
sensors. This is O(

∑n
i=1 si) where n is the number of sensor types, and si is the

number of sensor instances (related to the i−th sensor type) that can be used to
form any EA and contributing to provide a specific sensing service (e.g., light).

The number of possible EAs also depends from the number of actuators and
their instances. For each actuator type aj (with j = {1, . . . , k}) we get a com-
plexity of O(

∑mj

i=1 aji) where mj is the number of the j − th actuator type, and

5 https://www2.meethue.com/en-us 6 https://bit.ly/2VmRegr



aji is the number of actuator instances for the corresponding j − th type, that
can be used to form any EA and contributing to provide a specific actuating
service. All actuator types and their instances contribute to the search space.
When actuators are individually selected, the complexity is O(

∑k
j=1

∑mj

i=1 aji),

whereas their combination is given by O(
∏k

j=1

∑mj

i=1 aji). We recall that aj rep-
resents the j − th actuator type and the complexity of its instances is inherited
from the definition above. Thus, the size of the solution space for the optimisa-
tion problem is O(

∑n
i=1 si ×

∑k
j=1

∑mj

i=1 aji ×
∏k

j=1

∑mj

i=1 aji), and it becomes
clear that it may be huge even for small values of si, and aj . For example, in
our case study, we considered the following setting: si = 5, n1 = . . . = n5 = 20,
aj = 2, m1 = 3, m2 = 2, and the size of the solution space is 100 ∗ 5 ∗ 6 ' 3k
options which makes an exhaustive search computationally expensive.

To address this challenge, we describe a near optimal solution technique
that takes as input the specification of all the available devices, in the user
spatial boundaries, whose fragments (exposed by the corresponding DOs) are
suitable for the resolution of the planning problem. Such devices are analysed
and discarded from the optimal set whenever their QoS-related characteristics do
not fulfil the stated requirements. This set of devices, namely Dopt, is provided
as output, and it contributes to the domain for the planning.

An optimal selection of devices is performed taking into account the appli-
cation’s settings (also editable by the users). If minimisation or maximisation is
required, then an exhaustive search is necessary. On the contrary, if threshold
values are set, then it is needed to look for the subset of sensors that fulfil such
requirements. This way, the overall set of selected devices for both sensors and
actuators is guaranteed to fulfil the stated extra-functional requirements.

4 Experimentation

This section reports our experimental results for the SL case study. We are
interested to evaluate the QoS-based characteristics while selecting things (i.e.,
sensors and actuators). The scalability of the approach is also investigated.

4.1 Experimental setup and results

Table 1 reports the QoS-related characteristics of different brands of light sen-
sors, lamp and curtain actuators, respectively. Our case study includes five
brands of light sensors showing a power consumption (pc) varying from 1 to
5 watts7, and a sensing accuracy (sa) is spanning from 2 to 10 and denoting an
increasing precision. These two QoS-related characteristics are complementary,
in fact a higher accuracy is given by a larger power consumption. Lamp actua-
tors are of three different brands where power consumption varies between 10 to
20 watts8, whereas their light level (ll) is spanning from 4 to 8 and it indicates
an increasing brightness. As another example, curtains are of two brands with

7 See, e.g., https://bit.ly/2IC6jtd 8 See, e.g., https://bit.ly/2TibLWj



an associated power consumption of 7 and 9 watts9, and a discrete timing for
opening/closing (toc) equal to 8 and 12 seconds, respectively. All these num-
bers represent an estimation of QoS-related characteristics for arbitrary things,
however their actual setting is part of the modelling step, and further numerical
values can be considered when more accurate specification of things is available.

Table 1: QoS-related characteristics.

Light Sensors Lamps Curtains
LS1 LS2 LS3 LS4 LS5 LA1 LA2 LA3 CA1 CA2

pc 1 1.8 0.5 5 2.5 10 20 15 7 9

sa 4 7 2 10 8 - - - - -

ll - - - - - 4 8 6 - -

toc - - - - - - - - 12 8

All experimental results
are obtained by using a
laptop equipped with a
dual-core CPU running at
2.7GHz, and 8Gb mem-
ory. In the following we
discuss three main experi-
ments that have been per-
formed to evaluate differ-
ent aspects of the SL case

study. For all experiments we report the average values calculated over one hun-
dred runs of the SL application. Besides, the execution time of the overall process
is showed to demonstrate that its latency is affordable. In fact, we anticipate that
all execution times, measured from when the user starts the SL application to
the enactment of the QoS-based formed EA, vary up to 2.14 seconds, even when
handling up to one hundred devices.

Exp1: evaluation of QoS-related characteristics for sensors only. This exper-
iment is aimed to understand the savings when adding extra-functional require-
ments for a specific device type. In our case study, we evaluated what happens
when incrementally adding requirements (expressed with threshold values) to
the power consumption and sensing accuracy of sensors. Obviously, we achieve a
consistent power consumption saving (up to 50%) when considering constraints
on it; however, when also including sensing accuracy, we still get 35% of sav-
ings that is a remarkable improvement. In this last case, the sensing accuracy
increases, as expected, and this is due to the trade-off analysis among these two
metrics. More in general, the requirements can be separately considered and lead
to optimisation problems that provide different solutions.

Table 2: QoS-based optimisation for sensors.

noQoS QoS(pc) QoS(pc, sa)

Power consumption 233.1 117.7 140.8

Sensing accuracy 6.41 4.63 5.53

Execution time 1.96 1.97 2.14

Table 2 reports the val-
ues of Exp1, and it is struc-
tured as follows. Rows include
the metrics we are consid-
ering to quantify the QoS-
based savings, specifically: (i)
the power consumption of the
sensors used in the EAs; (ii)

the sensing accuracy of adopted sensors; (iii) the execution time (expressed in
seconds) for forming and enacting EAs. On the columns we distinguish three
cases: the first one is without setting any constraint on QoS-related characteris-
tics (i.e., noQoS in Table 2), the second is when setting the power consumption

9 See, e.g., https://bit.ly/2NYwPKF



of sensors being less than 2 watts (i.e., QoS(pc) in Table 2), and the third case
is when also establishing that the sensing accuracy has to be larger than 3 (i.e.,
QoS(pc, sa) in Table 2). We can notice that QoS-based savings are relevant for
our case study, in fact power consumption goes from 233 to 118. This implies a
modification in the sensing accuracy that instead decreases (from 6.41 to 4.63),
due to the selection of light sensors that consume less. However, the value for
the sensing accuracy slightly improves to 5.53 when setting the threshold to that
metric. Execution times also slightly increase across experiments when adding
QoS-related constraints, but the largest gap is equal to 2.14 - 1.96 = 0.18 seconds.

Exp2: evaluation of QoS-based characteristics for all devices. This exper-
iment investigates the savings when adding extra-functional requirements for
both sensors and actuators. In our case study, we evaluated QoS-based savings
when adding threshold values to the power consumption of all devices and pro-
gressively considering further aspects for light sensors, curtains, and lamps.

Table 3: QoS-based optimisation for sensors and
actuators.

noQoS QoS1 QoS2 QoS3

Power consumption 1946.5 1792.4 1588 1828

Sensing accuracy 6.37 4.35 4.29 4.45

Execution time 1.92 1.91 1.88 1.91

Lighting level 6.12 6 4.86 6

Time opening/closing 9.85 9.91 8 8

Table 3 reports the values
of Exp2, and it is structured
as follows. Similarly to Table
2, the first three rows report
power consumption (that is
measured taking into account
all devices), sensing accuracy,
and execution time. Last two
rows extend the evaluation to
the following metrics: (i) the

lighting level of lamp actuators used in the EAs; (ii) the time for opening/-
closing curtain actuators involved in the EAs. On the columns we present four
different cases. The first one is without QoS-related constraints, i.e., noQoS in
Table 3. The second (denoted by QoS1 in Table 3) is a combination of: (1) power
consumption of sensors (required to be less than 2 watts), lamp actuators (re-
quired to be less than 18 watts), curtain actuators (required to be less than
10 watts); (2) lighting level of lamp actuators (required to be larger than 5).
The third case (i.e., QoS2 in Table 3) keeps the same threshold values for the
power consumption, but it requires a minimisation of time for opening/closing
curtains. Finally, the forth case (denoted by QoS3 in Table 3) is a combination
of the previous two cases where thresholds for power consumption, lighting level
and time for closing/opening are jointly considered.

Obviously, we can notice that in all QoS-based optimisation procedures power
consumption shows an improvement with respect to noQoS, in fact it goes from
1946.5 up to 1588 in the best case. As drawback, the sensing accuracy decreases
and goes from 6.4 to values around an average of 4.3 (that is larger than the
stated threshold). Execution times are very similar in all cases, and this supports
the efficiency of QoS-based computation. Lighting level varies across cases and
achieves its worst value (i.e., 4.86, see Table 3) when not constrained by any
threshold. Finally, the time for opening/closing is also subject to some variations
that steer it down in cases where such metric is explicitly optimised, i.e., in the



last two columns of Table 3 where it shows a value of 8 vs the initial 9.85 (i.e.,
when measured with no QoS-based constraints). Figure 6 depicts the number
of alternative EAs. We can notice that in case of not considering QoS-based
requirements there are almost 50 different EAs that are enacted.
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Fig. 6: Variations in the selection of EAs.

As expected, the han-
dling of QoS-related require-
ments implies a reduction in
the number of valid EAs of
roughly 60%, in fact the av-
erage value of EAs in QoS
scenarios is around 12. Obvi-
ously, QoS3 is the one show-
ing the lowest value, since
it represents a combination
of requirements set for QoS1

and QoS2. Power consump-
tion (see Table 3) is reported
on top of bars in Figure 6 to remark the variations in QoS-based savings.

Exp3: scalability of the approach. We added ten and twenty light sensors
instances for each of the considered sensor brand, thus to evaluate the scalability
of the approach when considering up to 50 and 100 light sensors, respectively.

Table 4: Scalability of the approach.

noQoS QoS(pc) QoS(pc, sa)

#sensors= 5 1.96 1.97 2.14

#sensors= 50 2.01 1.98 1.99

#sensors= 100 2.10 2.05 2.07

Table 4 shows the execution
times (expressed in seconds) when
varying the number of sensors on
the rows, and the cases of Exp1 in
the columns. We found that in all
cases the execution time values vary
within a narrow interval, i.e., from
1.96 to 2.14 seconds. This supports

the scalability of our approach since the QoS-based computation does not largely
affect the process of forming and enacting EAs. The number of devices does not
affect the scalability of the approach, since the planner component of our plat-
form (see Figure 1) only considers the device brands and it is not checking their
instances when computing plans (i.e., fragments compositions).

Summarising, these three experiments provide a quantitative evaluation of
our approach and point out two main findings: (i) the effectiveness, since both
Exp1 and Exp2 clearly show QoS-based savings; (ii) the scalability, in fact Exp3
indicates that in the worst case the application of the approach takes 2.14 sec-
onds, and this can be considered affordable for those classes of IoT systems that
do not expose safety or hard real time constraints.

4.2 Discussion

Our approach includes a set of limitations that we discuss in the following.
Runtime monitoring. There are some QoS-related characteristics associated

to things that may change over time, e.g., the battery level of devices decreases



when they are in use or increases after charging. These aspects of runtime evo-
lution of things are currently not handled by our approach that instead com-
putes some preliminary check on the current status of devices only. However,
we plan to update these changing values and trigger a QoS-based adaptation
(e.g., switching among actuators showing similar QoS-based characteristics but
with different battery level) of EAs periodically.

Spatial boundaries. Our analysis is performed taking into account the user
spatial boundaries (e.g., a room). In principle, the number of things can scale
with order of magnitude larger than the ones considered in this paper. However,
here we experimented our QoS-based approach by varying the number of sensor
instances (in the lecture room of our case study) up to one hundred. We leave as
future work the evaluation of scaling the number of actuators, but we expect that
this does not affect too much our computation due to the intrinsic nature of the
planner component that reasons on device types (brands) instead of instances.

Requirements specification. It may happen that the QoS-based optimisation
problem is not able to provide a solution due to invalid requirements. However,
there might be some options that do not deviate largely from users’ expectations,
and we plan to provide these alternatives as feedback to users that may decide to
change their initial settings. Moreover, we plan to introduce weights associated
to users’ preferences on the type of available things. For example, in the SL
application it may happen that users get disturbed by the curtains opening and
closing, hence the activation of lamps is preferred.

Further architectural layers. Our approach currently allows the specification
of QoS-related characteristics for the sensors and actuators only, because they are
the main components for building the EAs. However, between these two layers
there are further architectural layers, such as different middleware, operating
systems, and communication protocols that contribute to the QoS of the IoT
system. As future work we plan to extend our approach to embed these layers
in the specification of QoS-related characteristics. An option can be to integrate
benchmarks modelling the delay of these layers in our optimisation problem.

Threats to validity. Our experimentation may be internally biased from the
settings of input parameters, QoS requirements, and executions of the SL ap-
plication. Both input parameters and QoS requirements lead to specify different
QoS optimisation problems, but the overall procedure is not affected. As oppo-
site, we found relevant to execute multiple runs of the SL application and we
experienced no variations between 50 and 100 runs, hence this latest number has
been considered to smooth biases in the output results. As external threats to
validity, we are aware that the application of the approach to other case studies
has not been performed, but we leave this point as part of our future work.

5 Related work

The work presented in this paper is related to two main streams of research that
we discuss hereafter, specifically the modelling of IoT architectures and their
QoS-based analysis.



In [5] a reference architecture to plug and produce industrial IoT systems
(whose architectural decisions are tackled in [15]) is presented, and it has the
goal to reduce industrial device commissioning times across vendor products. Dif-
ferently from our approach, the evaluation of IoT architectures in [5, 15] builds
upon some industrial (communication protocol and controller description) stan-
dards. On the contrary, our formalism (based on DOs) is aimed to specify any
QoS-related characteristic, by setting QoS-based criteria, such as minimisation,
maximisation, or a specific threshold value.

In [16] a framework for self-architecting service-oriented systems is proposed,
and QoS-based analysis is performed by quantifying the execution time and
availability of the service providers. In [17] QoS-based optimisation of service-
based systems is performed through modelling the application with a Discrete
Time Markov Chain (DTMC) and using a probabilistic model checker to rank
the configurations based on the required extra-functional requirements. In [18]
an approach for QoS-based feedback on service compositions is presented, and
it makes use of design-time and runtime knowledge to manage QoS data over
time [19], thus to support software architects while devising a service compo-
sition that best fits extra-functional requirements. Our approach mainly differs
from these works [16–19] in considering the issues of the IoT domain where ser-
vices may show QoS-based characteristics that are not platform-independent and
time-varying. This heterogeneity makes more complex the QoS-based optimisa-
tion problem. In [20] models at runtime and statistical techniques are combined
to realise adaptation of IoT systems, specifically quality models provides a prob-
abilistic estimate of different adaptation options. Our approach differs in the
specification of QoS-related characteristics that are explicitly modelled at the
architectural level and contribute to the selection of devices fulfilling functional
and extra-functional requirements.

In recent years, research has been done on the usage of business process-based
technologies in the IoT context. Indeed, Business Process Management Systems
(BPMS) approaches have become an efficient solution for the coordinated man-
agement of devices, as reported in [21]. At the same time, interesting research
challenges arise from this novel research field [22]. From the one side, workflow
management systems (WfMS) for industrial IoT have been realized to execute
and monitor IoT-based processes [23]. From another side, standard workflow
languages (e.g., BPMN 2.0) have been extended to support sensors/actuators
specific activities and IoT communication paradigms [24]. In our approach, the
use of the APFL and the abstract activities refinement mechanism enables the
dynamic execution of IoT applications. Moreover, APFL has been extended to
support the specification of QoS-related characteristics of things, inherited from
their producers and enabling QoS-based formation of software architectures. To
the contrary, APFL extensions to support things activities and IoT communica-
tion paradigms were not necessary. This is due to the use of the DOs formalism
that allows developers to work at an abstract level without dealing with the
heterogeneity of things and their communication protocols.



Summarising, we can conclude that, to the best of our knowledge, there is no
work that incorporates QoS-related characteristics in the modelling of IoT soft-
ware architectures and exploits this specification to jointly optimise functional
and extra-functional requirements.

6 Conclusion

In this paper we presented an approach to consider QoS-related concerns as first
class citizens in the process of forming software architectures in the Internet
of Things. We extended a modelling language for enabling the specification of
QoS-related characteristics of things (tags, sensors, actuators, objects, and de-
vices). This information is exploited in the automatic formation of EAs since
a QoS-based optimisation problem is adopted, and devices are selected taking
into account extra-functional requirements. The approach is applied to a case
study and the conducted experimentation provides three main lessons learned:
(i) when introducing extra-functional requirements, the savings may be relevant;
(ii) when considering multiple QoS-related characteristics, trade-off analysis is
suitable to balance among contradicting QoS-based goals; (iii) the scalability
of the approach is preserved when considering a realistic number of devices.
As future work, besides addressing the limitations that have been discussed in
the experimentation, we also plan to further investigate the effectiveness of our
approach when involving real-world things and industrial case studies.
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