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Abstract

In the Next Generation Internet landscape, different but interconnected
metaphors, such as the Internet of Services, the Internet of Things and the
Internet of People, to name a few, are living together in the same ecosys-
tem. This led to an increase of the complexity of the contexts in which
modern service-based systems must operate. Indeed, these systems need
to cope with open and continuously evolving environments. They are ex-
pected to operate under dynamic circumstances, where dynamism is given
by changes in the operational environment, changes in the availability of
resources and variations in their behavior, changes in users goals, etc. In
addition, modern systems consists of autonomous and heterogeneous com-
ponents that, anyhow, must cooperate in a transparent way to accomplish
the system goals.

In this settings, many approaches for self-adaptive systems providing
their related methodologies and tools for the design, development and ex-
ecution of systems in dynamic environments have been proposed. Adap-
tation, indeed, is considered a promising solution, and is still widely in-
vestigated, to release systems able to adapt and re-configure themselves to
satisfy the changing conditions in a context-aware manner.

Unfortunately, the existing approaches tend to foresee the system adap-
tation needs and their related solutions at design-time. In this way, even
if the adaptive behavior is effectively executed at runtime, the set of pos-
sible situations in which the system might need it, has been defined at
design-time. Despite their effectiveness when applied in closed environ-
ments, current approaches are inadequate for the application in the typical
open environments of the Next Generation Internet landscape. To deal
with resources that constantly join/leave the system together with their
provided functionalities, the traditional approaches require for continuous



involvement of IT and domain experts for the re-configuration of the sys-
tem to accommodate it to the changes. This is notably an error-prone and
time-consuming task. To increase the resilience of service-based systems
to frequent changes, a new way of approaching the systems modeling and
adaptation is needed.

In this direction, we claim that adaptivity is to be considered an in-
trinsic characteristic of systems rather than an exception to be handled.
Differently from systems where traditional change detection and adaptation
mechanisms can be used, the Next Generation Internet requires systems
that are adaptive “by design”.

In this dissertation, we propose a novel design for adaptation approach
of modern service-based systems that (i) allows the designer to model the
system environment by abstracting from the concrete services (and their
behaviors) that operate in it; (ii) provides a methodology for the uniform
modeling of autonomous and heterogeneous services that is applicable in
dynamic environments; (iii) provides methods for defining abstract adapta-
tion requirements facilitating the dynamic services interoperability on top
of a shared environment, by abstracting from their concrete implementa-
tion; (iv) supports the system execution via run-time and context-aware
adaptation by exploiting advanced planning techniques for the dynamic
and incremental service composition; (v) provides a complete life-cycle for
the continuous development and deployment of adaptive service-based sys-
tems with a huge degree of flexibility and extensibility, to handle with open
and dynamic environments.

The central aspect of the approach lies on how the used model allows us
to overcome the services heterogeneity, on the one side, and to enhance the
easy integration, reuse and interoperability of their offered functionalities,
on the other side. The way in which services are linked to the context
model allows services relations to be easily established and new services to
easily join the system, thus expanding the context. Relations, which are
set up by the exchange among services of offered/required functionalities,
are also the way through which services can span their knowledge on the
system environment (from a local to a global view). Consequently, with
our approach it is possible to handle at run-time the dynamism of both
systems and environments in a completely automated way.
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The core enablers of a comprehensive framework defined over the pro-
posed approach, have been implemented and evaluated on a real-world sce-
nario in the smart mobility domain. Promising evaluation results demon-
strate their practical applicability.

In addition, Collective Adaptive Systems (CAS) are spreading in new
emerging contexts, such as the shared economy trend. Modern systems are
expected to handle a multitude of heterogeneous components that cooper-
ate to accomplish collective tasks. In this settings, a first extension of our
framework in the direction of CAS has also been realized and evaluated.

Keywords
Next Generation Internet, Design for Adaptation, Incremental Service Com-
position, Collective Adaptive Systems, Smart Mobility
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Executive Summary

A key challenge posed by the Next Generation Internet landscape, is
that modern service-based systems need to cope with open and continu-
ously evolving environments and to operate under dynamic circumstances.
Dynamism is given by changes in the operational context, changes in the
availability of resources and variations in their behavior, changes in users
goals, etc. Indeed, dynamically discover, select and compose the appropri-
ate services in open and expanding domains is a challenging task. Many ap-
proaches for self-adaptive systems have been proposed in the last decades.
Unfortunately, although they support run-time adaptation, current ap-
proaches tend to foresee the system adaptation requirements and their
related solutions at design-time. This makes them inadequate for the ap-
plication in open environments, where components constantly join/leave
the system, since they require for continuous involvement of IT and do-
main experts for the systems re-configuration. We claim that a new way
of approaching the adaptation of systems is needed.

In this dissertation, we propose a novel design for adaptation framework
for modeling and executing modern service-based systems. The idea of the
approach consists in defining the complete life-cycle for the continuous
development and deployment of service-based systems, by facilitating (i)
the continuous integration of new services that can easily join the systems,
and (ii) the systems operation under dynamic circumstances, to face the
openness and dynamicity of the environment.

Furthermore, Collective Adaptive Systems (CAS) are spreading in new
emerging contexts, such as the shared economy trend. Modern systems are
expected to handle a multitude of heterogeneous components that coop-
erate to accomplish collective tasks. In this settings, an extension of our
framework in the direction of CAS has also been defined.

The core enablers of the proposed framework have been implemented
and evaluated in real-world scenarios in the mobility domain. Promising
evaluation results demonstrate their practical applicability.
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Chapter 1

Introduction

The purpose of this thesis is that of presenting a design for adaptation
approach for the modeling and execution of service-based systems oper-
ating in dynamic environments. Anyhow, to understand the reasons that
led to an urgent need for novel approaches supporting and enabling the
adaptation of modern service-based systems starting from their design, we
need to analyze the context in which these systems live. Thus, in section
1.1, we discuss the current operational context of modern service-based
systems. Then, we highlight both the problem and the research challenges
that we intend to address in section 1.2. With this knowledge in mind, an
overview on the contribution of this thesis work is introduced in section
1.3. We close the chapter with the complete thesis outline given in section
1.4.

1.1 Thesis Context

The Internet of Services (IoS) is widespread and it is becoming more and
more pervasive, since the trend is to deliver everything as a service [1],
from applications to infrastructures, passing through platforms [2]. Fur-
thermore, the scenario is still evolving: the IoS is envisioned as one of the
founding pillars of the Next Generation Internet [3], together with new
metaphors, such as those of the Internet of Things (IoT) and the Internet
of People (IoP) [4].

In the IoS landscape, Service-Oriented Architecture (SOA) plays a cen-
tral role. It is essentially a software engineering paradigm according to
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which software is designed and developed in form of interoperable services.
Indeed, one of the main potentialities of SOA is represented by service
composition, that gives the possibility to create new services and service-
based applications (i.e., composite services), by combining existing services
(i.e., component services), to release new and most complex functional-
ities addressing specific goals. Service-based systems, instead, constitute
the overall execution context where service-based applications run, in or-
der to achieve their goals. They include the underlying services, software
and hardware platforms, monitor and adaptation mechanisms, and so on.
However, the scenario in which service-based systems must live and operate
is influenced by different factors. Service-based systems must now face the
increased flexibility and dynamism offered by modern service-based envi-
ronments. The number and the quality of available services is continuously
increasing and improving. In addition to new services, existing services
may change their behavior, including their offered functionalities, and they
may also join and leave the systems at any time. This makes service-based
environments open and highly dynamic. In other words, service–oriented
computing take place in an “open world” [5].

From an IoT perspective, the availability of devices and tools to access
software-based services has also increased dramatically: services run on
many of the devices that are used every day in a variety of contexts (e.g.,
smartphones, wearable, watches, smart home devices, connected health
devices, smart farming devices). In this setting it is of relevant importance
to take into account the different technical features of all kinds of devices
(e.g., capacity, operating systems, interfaces), since they are becoming part
of the infrastructure for publishing, discovering and executing services.

From the IoP side, instead, nowadays users are increasingly proactive
and demanding. They participate in the systems they use and they can act
as service providers as well. A suitable example comes from the sharing
economy 1 trend that led to the spread of shared services. For instance,
in the mobility domain, shared mobility services are based on the shared
use of vehicles, bicycles, or other means. Users can act both as consumers
(e.g., requiring a bike, a ride-share, etc) and as providers (e.g., offering
their bikes, ride sharing, etc).
1 https://en.wikipedia.org/wiki/Sharing economy
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In this settings, we believe that, in the Next Generation Internet land-
scape, service-based systems must have a rightful place at the crossroads
of IoS, IoT and IoP.

To date, service-based systems are employed in a multitude of applica-
tion domains, such as e-health, smart-homes, e-learning, education, smart
mobility and many others. A particularly suitable domain to show the
challenges of open and dynamic environments is the mobility domain. It is
also very relevant both at European and world level. For instance, many
past and running projects have been funded with the aim of providing solu-
tions to support and stimulate a more integrated and sustainable mobility
(e.g., [6, 7, 8]). Indeed, the offer of mobility services is quite large and
heterogeneous. These services may differ depending on diverse aspects,
such as the service type (e.g., journey planners, shared mobility services,
traditional mobility services, online ticket payment services), the offered
functionalities (e.g., user profiling, ticket booking, ticket payment, seat
reservation), the targeted users (e.g., citizens, tourists), the provider (e.g.,
public vs. private), the geographical applicability scope (from local to global
services), availability constraints (e.g., free vs. pay), etc. In addition, a
journey organization, execution and monitoring consists of a set of differ-
ent mandatory and/or optional phases (e.g., registration, login, planning,
booking, check-in) that must be carried out, according to the involved real-
world services. Indeed, different services can be exploited to perform the
same functionality, and the pertinence of their application depends on the
specific context of execution.

In these settings, Smart Cities are becoming one of the main drivers
in the eruption of the Next Generation Internet. The urgent need for a
more efficient and sustainable society, together with the spread of ubiqui-
tous communication networks, highly distributed wireless sensor technol-
ogy, and intelligent management systems, makes the Smart City ecosystem
and ideal ground for IoS, IoT and IoP. In this context, the role of service-
oriented architecture is to enable the integration and interplay between
public and private city services to solve current and future challenges and
support the creation and delivery of innovative and efficient services for
the citizens [9].
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Focus of the thesis. From here on, the focus of this thesis work will
be more on the IoS landscape. However, the approach presented in this
dissertation has been designed with the IoT and IoP paradigm in mind.
Indeed, further extensions in their direction are part of our near future
work.

In last decades, the aim of service oriented computing has been that of
encouraging the creation and delivery of services, also taking advantage of
the support of Web. Besides, automated service composition is a power-
ful technique within service-oriented computing allowing to compose and
reuse the existing services as building blocks for new services (applications)
with higher-level functionalities, based on users’ needs. Additionally, the
role played by companies and organizations is also considerable. They
are publicly providing their services to allow third-party developers to ex-
ploit them in defining new services, thus enhancing their accessibility [10].
This is of relevant importance in the IoS scenario, since it implies the
availability of reliable services offering functionalities that cannot be easily
implemented by single developers or small companies (e.g., Google Maps,
Paypal, Rome2Rio). Different organizations are building on this trend
to provide online platforms for the management of well-defined RESTful
APIs through which these services can be accessed. For instance, Pro-
grammableWeb 2 now has more than 10,000 API in its directory. As a
consequence, both researchers and practitioners are highly motivated in
defining solutions allowing the development of service-based systems, by
exploiting existing available services.

Yet, as we already mentioned, the continuously increasing number and
quality of available services, naturally makes service-based environments
open and highly dynamic. This strongly demand self-adaptive service-based
systems, that is, systems able to both adapt to their actual context (i.e., the
currently available services) and react when facing new context situations
(e.g., missing services, newly available services, changed services, changes
in the user requirements and needs).

However, “there are still major obstacles that hinder the development
and potential realization of service computing in the real world”. This is
clearly stated in [10], where a number of experts in service computing pro-
2 http://www.programmableweb.com
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vide a manifesto about a ten-years roadmap guiding the service oriented
computing in overcoming its current limitations and addressing new emer-
gent challenges. In fact, the evolution of the Future Internet as well as the
latest Next Generation Internet vision further challenge the IoS paradigm.
As discussed in [11], “service-oriented computing has to face the ultra large
scale and heterogeneity of the Future Internet, which are orders of magni-
tude higher than those of today’s service-oriented systems”. Indeed, the
main limitation in the literature is that, in our opinion, the huge number of
service-based methodologies and approaches are limited by the fact of deal-
ing with one or a few of the features required by adaptive service-oriented
systems to operate in modern environments.

For instance, microservices [12, 13] have been proposed to support the
development of distributed applications, as the evolution of monoliths,
quite more compliant with modern service storage and provision platforms,
such as the cloud. However, microservices focus more on the evolution of
systems either than on their adaptive behavior. Software product lines
(SPL) (e.g., [14, 15, 16]) or mashup applications (e.g., [17]) focus both on
supporting the variability of service-oriented applications when executed
in dynamic environments, providing a way for dynamically combining the
most appropriate services for the current situation. However, SPL ap-
proaches are meant for closed environments, where the available services
are known a priori. Mashup applications, instead, do not provide a generic
modeling approach for defining adaptive services.

Self-adaptation is still one of the main concerns in the context of IoS.
Many approaches have been proposed with the aim of increasing the
flexibility of applications to support both their adaptation and evolution
needs.

They span from rule-based approaches (e.g., [18]), to artifact-centric ap-
proaches (e.g., [19]), passing through dynamic software product lines [20]
or configurable process modeling approaches (e.g., [21, 22]), to name a few.
However, the adaptation of service-based systems should not pre-define
adaptation rules as part of the systems’ logic and, then, trigger them when
specific needs arise. Indeed, this would prevent an effective management
of the dynamicity of the environment that might also cause adaptation
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needs that have not been pre-defined at design-time. Besides, most of
the approaches falling in these categories are mainly limited by their low
applicability in open environments and their distance from real execution
contexts, often preventing them from leaving the realm of research.

Lastly, the level of complexity of modern systems is progressively in-
creasing. They actually form socio-technical systems, composed of dis-
tributed entities (e.g., services and service providers, software and human
participants) interacting with and within the environment. In this context,
multiple participants must adapt their behavior in concert to respond to
critical run-time impediments. This trend is bringing to the spreading of
Collective Adaptive Systems(CAS), where the adaptation is a feature of the
collectiveness, thus demanding for collective adaptation approaches [23].

1.2 Problem and Research Challenges

Despite the progress reached in service oriented computing, a further ef-
fort is still required to shape dynamic and context dependent services and
applications that can efficiently and effectively operate in modern environ-
ments.

A key challenge that still needs to be overcome, so that the creation of
innovative services becomes a reality, is the capability of dealing with
the continuously changing and complex environments in which
applications operate.

To acknowledge this claim, an important consideration must be made
about the before-mentioned openness and dynamicity of service-oriented
environments that we will particularly stress in this dissertation.

Open environments are quite challenging. As we said, they are charac-
terized by services entering and leaving the system at any time. Besides,
systems can be affected by the unavailability or malfunctioning of ser-
vices and from changes in their procedures, which could be affected even
by changes in regulations and norms. This means that the services on
which service-based systems rely on might not be known a priori and/or
not available at execution time. In addition, if we consider the amount of
publicly available services, it is easy to notice that different services might
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implement the same functionality, even if with different procedures, and
each of them may be more or less appropriate in a specific execution con-
text. Because of this, to perform accurately, service-based systems must
be aware of the specific execution environment during their execution, thus
operating differently for different contextual situations, by exploiting the
effectively available services.

Thus, what we want to emphasize is that the openness of the environ-
ment further increases its dinamicity. This is why the traditional change
detection and adaptation mechanisms meant to be used in dynamic but
closed environments, are not suitable for the application in modern open
environments.

In other words, differently from applications where traditional adapta-
tion mechanisms can be used, the Internet of Services requires systems
that are adaptive by design.

Consider for instance the case of a Travel Assistant system, support-
ing service users (tourists, citizens) and providers (transportation means
companies, municipalities, mobility service providers) in their daily opera-
tion and management of mobility services (e.g., buses, trains, bike-sharing,
ride-sharing) and journeys, within a smart city as well as among different
cities/countries. The implementation of such a system requires to deal
with a variety of heterogeneous services: from generic services (e.g., access
management) to domain specific services (e.g., journey planning); from
legacy city services (e.g. access to traffic information or local parking
availability from local systems) to new innovative services (e.g., a travel
assistant supporting users for the whole travel duration); from fundamen-
tal infrastructure services (e.g., wireless sensor network connecting sensors
and smart devices) to application-like and end-user interaction services
(e.g., mobile and Web apps for users). Given the variety and autonomous
nature of these services, changes are not only frequent, they are an inner
characteristics of the system.

In this context, the requirements that a service-based system must fulfill
to contemporary deal with all the characteristics of modern environments
can be summarized as follows. The system must be capable to propose
complex and personalized solutions (customizability) taking advantages of
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the variety of services (interoperability), while taking into account the state
of the environment (context awareness). During its execution, they must
be able to react and adapt to changes in the environment that might occur
and affect its operations (adaptivity) and the system must be open and
extensible for new services to become part of it (openness awareness). In
addition to these, there are commonsensical requirements strictly related
to the nature of services. The system must, indeed, consider the hetero-
geneity of the services (heterogeneity awareness) and their autonomous
nature (autonomy awareness), while providing up to date and reliable in-
formation and solutions (information accuracy). Lastly, what is expected
from modern systems is that they are deployable in different environments
without an ad-hoc reconfiguration from the developers (portability). This
particularly calls for general and domain independent approaches that can
be easily fitted to different domains.

These emergent requirements strongly affect the design, the execution
and the adaptation of service-based systems. With these premises, we come
out with two main research challenges (RC) that we intend to address with
the work presented in this dissertation, which are:

RC1: provide a solution for modeling and executing adaptive service-based
systems that is able to handle the above-mentioned requirements as a
whole, rather than only a subset of them;

RC2: provide a solution that can be easily applied in real-world service
execution contexts, thus able to be used also out of the realm of re-
search.

1.3 Contribution

These premises motivated the work presented in this dissertation about
a novel design for adaptation approach of service-based systems. The ap-
proach is based on the idea that adaptation cannot be considered an ex-
ception to be handled, but instead, service-based systems must be adaptive
by design.

To address the issues illustrated in the previous section, we agree with
and we have been inspired by the suggestion given in [24], where the au-
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thors argue that mechanisms enabling adaptation should be introduced in
the life-cycle of systems, both in the design and in the run-time phases.
To achieve this, the adaptation must be supported by a coherent design
approach supporting both the definition and the application of adaptation.

In very general terms, the idea of the approach consists in defining the
complete life-cycle for the continuous development and deployment of
service-based systems, by facilitating (1) the continuous integration of
new services that can easily join the systems, and (2) the systems opera-
tion under dynamic circumstances, to face the openness and dynamicity
of the environment.

This has been realized by specifying a new design approach allowing
the separation between the application and adaptation logic of each mod-
eled service and, thus, of the entire service-based system. This is par-
ticularly reached by using two separate but correlated models: (1) the
Domain Model describing the operational environment of the system. It
allows designers to abstract the domain concepts of the referred domain.
(2) The Domain Objects Model allowing developers to uniformly specify
the autonomous and heterogeneous services in the environment, and their
dynamic interaction, as the concrete and diverse implementations of the
domain concepts specified by the domain model. Thus, different imple-
mentations (i.e., services) of the same concept can be interchanged as
needed, depending on the execution context. In addition, the approach
allows for the specification of services behaviors (i.e., domain objects core
processes) and functionalities (i.e., domain objects fragments) as dynami-
cally customizable processes that can be concretely specified at run-time, to
guarantee the context-aware execution of systems. To make this processes
customizable and adaptable, they are labeled with composition require-
ments predicating over the domain model. These annotations guarantee
the detachment of adaptation requirements from concrete services specifi-
cation. To further increase the flexibility of the system, in order to handle
the high dynamicity of the execution environment, the approach allows
service-based systems to dynamically span their knowledge on the whole
domain, at execution time. In this way, systems can expand their partial
view on the domain, by discovering available services on the need.
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At this point, what is missing is the explanation of how the adapta-
tion (dynamic process customization) is performed. As we said, because
of the openness and dynamicity of the environments, the adaptation of
service-based systems should not be pre-defined, since this would prevent
an effective management of the environment dynamicity.

To this aim, our approach provides different adaptation mechanisms and
strategies allowing systems to adapt to different situations (e.g., select the
proper services, react to a context change, etc). In particular, to guarantee
as much as possible the success of the provided systems (e.g., in terms of
their applicability, correct execution, coherent adaptation, etc), their adap-
tation must be performed closer to their execution, that is, when the con-
text is known. To achieve this, the approach exploits advanced techniques
for dynamic and incremental service composition and re-configuration [25],
allowing to effectively deal with changes occurring at different levels in the
system (e.g. entrance and exit of services, change in provided function-
alities, change in system requirements). Indeed, the exploited adaptation
mechanisms and strategies are particularly suitable in open environments.

Lastly, to face the increasing level of complexity of modern systems,
which is flowing into collective systems, the approach has been extended
to model CAS and perform collective adaptation. The applicability in real-
world execution environment is, finally, demonstrated by the development
of a Travel Assistant in the mobility domain that completely relies on
real mobility services, previously integrated in the system, by defining and
connecting them in terms of the presented design for adaptation approach.

Figure 1.1 summarizes the approach by abstracting its fundamental fea-
tures, showing how it works to deal with both individual and collective
adaptive systems.

Publications.

Some of the contributions making this thesis work are also reported in the
following published papers on which this thesis is founded. A preliminary
version of our approach is illustrated in [26] (ESOCC 2014 ). A further ex-
tension and revision is reported in [27] (ICSOC 2015 ). Here we introduce
the basic constructs, techniques and enablers of the design for adaptation
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Figure 1.1: From Individual to Collective Adaptive Systems.

solution. In [28] (ICWS 2016 ) the approach has been further formalized
and preliminary evaluation results are given. The development of a com-
prehensive framework based on our approach and the implementation and
evaluation of a service-based application developed within it has been pre-
sented in [29] (ICSOC 2017 ). Here we propose ATLAS – a world-wide
travel assistant that enables the integration and interplay between new
and real-world mobility services, dynamically operating and adapting in
the mobility domain. The extension of the design for adaptation approach
in the direction of CAS, together with the definition of a collective adapta-
tion algorithm for their execution are reported in [30] (ASOCA at ICSOC
2016 ). The implementation and evaluation of the extended approach for
CAS, instead, is given in [31] (Best Demo Award at the demo track at IC-
SOC 2016 ). Here we provide a simulator for collective adaptive systems.
It currently implements and executes a Urban Mobility System scenario.
In particular, it shows both its normal execution, via ensembles formation,
and its collective adaptation when facing adaptation needs affecting one or
several ensembles. As concern CAS, we further proposed a Domain Spe-
cific Language (DSL) for engineering CAS in [32] (eCAS at SASO 2017 )
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and its related tool in [33] (demo track at SASO 2017 ). Lastly, a prelim-
inary investigation about service co-evolution within our framework has
been presented in [34] (WESOA at ICSOC 2015 ).

The development of our approach was partially performed in the scope
of the ALLOW Ensembles European project [35] that adopted part of the
approach, specifically the one relating to the modeling and management of
CAS.

1.4 Thesis Outline

This thesis work is organized in eight chapters. Chapter 2 provides an
overview on background information on the main topics of the thesis. We
give some basic information on SOC and its related standards and we
review the state of the art in the areas of the design and the dynamic
adaptation of service-based systems. The chapter also identifies some im-
portant open issues in these areas. Chapter 3 provides an overview of our
design for adaptation framework for modeling and executing service-based
systems. It introduces the motivating example of this dissertation, which
is about a smart travel assistant in the mobility domain, that helps us
to discuss the motivations of our research. It also introduces some basic
concepts that are useful to understand the subsequent chapters. In chap-
ter 4 we introduce our approach for the design of service-based systems
relying on the interoperability of different services and supporting the def-
inition of adaptation in the systems models. Chapter 5, instead, details
the adaptation mechanisms and strategies allowing systems to operate in
open and dynamic environments and to adapt their behavior to the opera-
tional context at run-time. In chapter 6, we introduce Collective Adaptive
Systems, by also providing a relative literature overview. Then, we explain
how the design for adaptation approach of chapter 4 can been extended
with specific constructs to model CAS. Furthermore, we illustrate how the
adaptation mechanisms discussed in chapter 5 are exploited for the normal
execution of CAS, allowing different entities to be grouped into ensembles
and to collaborate. For the decentralized and collective decision manage-
ment required by CAS, instead, we further provide a collective adaptation
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approach, by illustrating its corresponding algorithm and evaluating it on
two different scenarios. Chapter 7 is devoted to the implementation and
evaluation of a comprehensive framework implementing all the enablers
required by the approach presented in this thesis. In particular, both the
original approach and its extended version for CAS are shown in action
in two different demonstrators realized within the framework, namely AT-
LAS 3 and DeMOCAS 4 that are freely accessible as open-source tools.
Finally, chapter 8 contains a final discussion on the requirements coverage
provided by our solution. In addition, we discuss a number of works ac-
cording to the future directions that we intend to investigate in the near
future. Eventually, each chapter is equipped with a final section where we
briefly discuss the content of the chapter, its possible open points and its
connections with the rest of the work.

3 ATLAS is available at: https://github.com/das-fbk/ATLAS-Personalized-Travel-Assistant. A
video on the execution of ATLAS is available at: https://vimeo.com/231387418. 4 DeMOCAS is
available at: https://github.com/das-fbk/DeMOCAS. A video on the execution of DeMOCAS is avail-
able at: https://www.youtube.com/watch?v=H0_LjptwZDg&feature=youtu.be.
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Chapter 2

State of the Art

In this chapter we discuss the most significant advances in those areas
of service-oriented computing that relate to the management of service-
oriented systems and applications. As starting point, in section 2.1 we
provide an overview of the principles of service-oriented architecture and
we introduce important definitions by describing the main standards cur-
rently in use. The remaining sections of the chapter are devoted to the
current progress in two main areas of interest that are central to this dis-
sertation. In particular, in section 2.2 we survey some of the most relevant
works dealing with the modeling of service-based systems and applica-
tions. We focus especially on those modeling approaches whose aim is,
among the others, to increase and support the flexibility and dynamic-
ity of the modeled systems. Section 2.3, instead, surveys relevant works
concerning methodologies for the adaptation of service-based systems and
applications.

To organize this literature review, we have decided to survey approaches
belonging to those areas with which we have been asked to compare our
solution during the years of this PhD work. In addition, we provide a
detailed literature review about decision-making and run-time adaptation
in Multi Agent Systems in chapter 6, which is devoted to the extension
of our design for adaptation approach to deal with Collective Adaptive
Systems. We conclude the chapter in section 2.4 by briefly discussing the
identified problems with the existing approaches. We finally give some
hints on how the work presented in this thesis is supposed to improve and
extend the state of the art in the considered areas of interest.
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2.1 Overview on Service-Oriented Architecture

Service-Oriented Computing(SOC) and Service-Oriented Architecture (SOA)
are the wide scope which this thesis work belongs to. In [36], SOC is sum-
marized as follows:

Service-oriented computing represents a new generation dis-
tributed computing platform. As such, it encompasses many
things, including its own design paradigm and design principles,
design pattern catalogs, pattern languages, a distinct architec-
tural model, and related concepts, technologies, and frameworks.

From this definition, it arises the complexity of the SOC paradigm with
all the elements making it. Among them, SOA represents the next step in
the evolution of distributed computing. It is essentially based on the idea
to construct business applications of reusable components called services.
To effectively and efficiently exploit the potentiality of SOA, however, a
set of design principles [36] have been defined. Despite the numerous pro-
posals for services modeling languages, these design principles are in any
case the foundation that must be guaranteed by every language. Thus, we
briefly summarize them in the following. Within the same service inven-
tory, services use the same service description standards. In other words,
they all adhere to a service contract specifically defined by service de-
scription documents (standardized service contract). Service contracts are
decoupled from their surrounding environment, especially from their con-
crete implementation. In such a way, they can evolve independently from
service consumers and from their implementation (service loose coupling).
Service contracts publish only essential information about services, by hid-
ing their internal logic (service abstraction). Moreover, the service logic
is defined in such a way so that it can be reused entirely or in some of
its parts (service reusability). Going on, services exercise a high level of
control over their underlying run-time execution environment (service au-
tonomy) and, as concerns the management of their state data, they defer
it when possible, to minimize the resource consumption (service stateless-
ness). Services should facilitate their discoverability. To this aim, they are

16



equipped with communicative meta data through which they can be discov-
ered and interpreted (service discoverability). Last but not least, services
are composable elements, independently from the composition complexity
(service composability). Follow these principles means to realize flexible
service-based applications, by significantly decreasing their development
cost and further maintenance support.

In the last few decades, a multitude of languages for modeling services
as well as approaches for their efficient composition have been proposed.
In the rest of this section, we give an overview on the standard languages
and approaches that constitute the basis of all the further extensions that
have followed over the years.

2.1.1 Services Modeling Languages

Despite SOA is based on different open standards and can be realized
by using different technologies, such as REST [37] to name one, its most
popular implementation is based on Web Services [38]. Even if our re-
search is not strictly associated with Web services but, to the contrary, it
is independent of any specific service-based technology, we often use Web
services-related terminology [39]. Moreover, since Web services represent
the most complete implementation of SOA, we give here an overview on
this standard technology.

According to the World Wide Web Consortium (W3C), a Web service
is a software system supporting the machine-to-machine interaction over
a network. It is equipped with an interface described in WSDL and it in-
teracts with other systems as prescribed by its description, by using SOAP
messages. Messages are transmitted using HTTP with an XML serializa-
tion, by also exploiting other Web-related standards 1.

There exists a set of standards concerning the Web services technology
and supporting the basic infrastructure required to implement Web ser-
vices. We describe here the most relevant by summarizing their detailed
specification given in [38]. The standard for the Web service message for-
mat is Simple Object Access Protocol (SOAP) 2, which uses XML as data
format. The central role played by SOAP is that of communication pro-

1 https://www.w3.org/TR/ws-gloss/ 2 https://www.w3.org/TR/#tr_SOAP
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tocol, whose aim is that of providing a standard way to encode different
protocols and interaction mechanisms into XML documents that can be
easily exchanged through the Internet [38]. In particular, SOAP has been
designed to be stateless and one-way, thus supporting the service loose
coupling principle mention above. Then, the Web service infrastructure
provides unified description documents to declare how a Web service can
be exploited. The most important ones refer to service interface and ser-
vice protocol. A service interface is a set of supported operations, each of
them with its input and output messages. The Web Service Description
Language (WSDL) 3 is a standard language for Web service interfaces spec-
ification based on XML. WSDL allows designer to specify the programming
interface of a Web service through the definition of its supported methods
with their input and output messages. Besides supporting the standardized
service contract principle, the definition of WSDL has been also required
by the need to cope with the lack of a centralized middleware managing the
message transport, which has arisen with the evolution from conventional
middleware to Web services infrastructure [38]. A service protocol, instead,
gives the valid operations sequence and it describes how the service state
is affected by the execution of these operations. Service protocols can be
specified with any workflow languages. The most famous one is, probably,
Abstract BPEL that is part of the Web Service Business Process Execution
Language (WS-BPEL) 4, a language for executable service-based business
processes. Lastly, a quite relevant standard allowing for the advertisement
and discoverability of services is the Universal Description Discovery and
Integration (UDDI) 5 specification. A standard way to publish and locate
services was strongly required to use Web services in a pervasive manner,
thus leading to the standardization of the Web services registry provided
by UDDI. Indeed, UDDI standardizes registries through which services can
advertise themselves on the Web. In turn, customers can use the registries
to discover, locate and execute services. In particular, UDDI defines both
data structures and APIs for publishing service descriptions in the registry
as well as for querying it [38]. The goal of UDDI is twofold: it supports
the service discovery by the developers and, more important, it enables the

3 https://www.w3.org/TR/#tr_WSDL 4 http://docs.oasis-open.org/wsbpel/2.0/OS/
5 https://www.oasis-open.org/standards#uddiv3.0.2
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dynamic binding among services.

In summary, from these basic standards we can derive the conventional
model of service-oriented architecture, based on Web services, that works
as follows. Services are developed by service providers and equipped with
service description documents, such as WSDL. These services are then
submitted to a UDDI registry that makes them available on the Web.
Service consumers can discover available services by using the registry and,
thus, obtaining their descriptions. At this point, service consumers can
interact with the selected services via SOAP messages.

Web services, of course, embrace many more aspects than those covered
by SOAP, WSDL, BPEL and UDDI. Obviously, several extensions to this
conventional model have been performed from its initial definition. Ex-
tensions have been made necessary for different purposes. Probably the
most relevant refers to the management of a coordinated execution of mul-
tiple services. Indeed, besides the one-to-one interaction between a service
and its consumer, what is quite challenging still today is the communica-
tion and collaboration management among different service providers and
service consumers, operating to achieve certain goals. In fact, one of the
potential of Web services is that they can be easily combined in such a way
that simple services of different programs can interact and be composed
to deliver value-added services. This is also due to the fact that Web ser-
vices define the interactions among components, without any restrictions
on the implementation technologies or platforms. Because of this, service
composition has become a major challenge in SOC.

2.1.2 Service Composition

Service composition is probably the major potential offered by SOA. It
essentially gives the possibility to create new services and service-based
applications (i.e., composite services), by combining existing services (i.e.,
component services), to release new and most complex functionalities ad-
dressing business goals. Although it is apparently a simple task, service
composition is quite difficult and it also span among different research ar-
eas. Indeed, it involves the specification of composition requirements, the
discovery and selection of suitable services and their further composition.

19



Moreover, after the composition has been performed, it might also be mon-
itored and adapted.

From the arising of Web services infrastructure, service composition was
a natural way for managing the complexity of defining complex services,
as the combination of the functionalities provided by other Web services.
It is easy to notice how service composition exploits both the service com-
posability and the service abstraction design principles, by allowing the
definition of composite services built on top of services at a lower level
of abstraction. Naturally, there exist several approaches for the service
composition proposed in the last decades [40], and a lot has been also
done, from the beginning, to make this process automatic. Indeed, with
the evolution of the Internet and the spreading of the Internet of Services,
researchers started soon to propose and realize approaches able to, firstly,
make bindings between services more flexible and, secondly, to automa-
tize as much as possible the service composition process, to make services
and service-based applications faster, dynamic and adaptive. Some of the
early work done in this direction are [41, 42, 43]. Briefly, in [41], the au-
thors aimed at overcoming the typical point–to–point delivery of services,
by proposing a platform, so-called eFlow, for specifying, enacting, and
monitoring composite services defined as business processes. [42] proba-
bly represents one of the first attempt to arrange the automatic e-Service
composition. Its implementation involves the so-called composition synthe-
sis referring to the synthesis of a new composite e-Service, by specifying
the coordination among the component e-Services exploited to obtain the
composite one. The work in [43], instead, goes beyond the simple reuse of
composite services, by pushing the reuse of the compositions themselves
as orchestrators able to flexible bind different component services, instead
of specific ones. This work clearly builds on top, and further refines, the
concept of service binding, aiming at postponing it as later as possible in
the composition life-cycle, to make it flexible and even open to the ex-
ploitation of diverse dynamically selected services. However, a complete
review on this topic goes a bit out of the scope of this dissertation. In fact,
even if our proposed design for adaptation approach exploits service com-
position techniques for the run-time adaptation of service-based systems,
we do not provide any new service composition approach. The focus of
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our solution is much more on the design side of service-based systems, in
such a way of making them adaptable by design, by potentially exploiting
different available service composition solutions.

As a consequence, while for the interested reader we strongly suggest [40]
as an overview on Web services composition approaches, in the rest of this
section we mention the two conventional ways to compose services, un-
der which almost all approaches fall down. We refer to orchestration and
choreography [44]. Orchestration is distinguished by the presence of an
orchestrator, that is, a central component that fully control the compo-
sition logic and simplifies the interoperability among component services.
Choreography, instead, gives interaction protocols among different services
participating in the composition in a decentralized fashion. As a conse-
quence, with choreographies the composition logic is distributed among all
component services. Furthermore, these two approaches are not mutually
exclusive. To the contrary, they can also be used in combination.

Standard languages have been defined for specifying orchestration and
choreographies. Among all, we mention Business Process Execution Lan-
guage (BPEL), as the reference standard for services orchestration. In
particular, Executable BPEL is the part of BPEL devoted to the descrip-
tion of executable service-based business processes. It is used to define
work-flows, by specifying for instance service invocations activities, send
and receive message activities (i.e., for asynchronous interaction), events,
operations and variables. These activities are, then, organized through a
set of standard control-flow constructions (e.g., loops, parallel and sequen-
tial execution). Different extensions of BPEL have also been proposed to
overcome some of its limitations. An example is WS-BPEL Extension for
People (BPEL4People) [45] that introduced human activities to BPEL in
order to allow it to define general purpose business processes rather that
orchestrations of Web services.

Web Services Choreography Description Language (WS-CDL) 6 is prob-
ably the main standard for specifying choreographies. It is used to describe
peer-to-peer collaborations between parties, by defining their observable
behavior (message exchange) from a global perspective. Collaborations
specified in WS-CDL allow predefined business goal to be achieved.
6 https://www.w3.org/TR/ws-cdl-10/
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Lastly, Business Process Model And Notation (BPMN) 7 is also a pow-
erful approach for the definition of business processes on conceptual level.
It is widely used for specifying service-based business processes and it is
exploited for defining both orchestration and choreographies.

To conclude this high-level overview on service composition, we find
relevant to mention that, according to researchers and practitioners, ser-
vice composition approaches can follow essentially two different strategies,
namely top-down and bottom-up [46]. In particular, these strategies refer
to the first phase of the service composition life-cycle, known as synthesis.
Top-down approaches firstly foresee the composition at a higher level of
abstraction, for instance by defining an abstract process model. Then, the
predefined abstraction is converted into an executable composition through
the discovery and selection of suitable services and their further compo-
sition. Bottom-up approaches derive the service composition logic based
on services definitions and a specific abstract goal to be reached. Further-
more, automated service composition allows for the automatic combination
of services, by using an automated reasoner as, for instance, in AI planning
based service composition approaches [47].

As concerns the design for adaptation approach presented in this dis-
sertation, we already said that it exploits automated planning techniques
for the dynamic and incremental service composition [25], for the context-
aware customization of processes and the run-time adaptation of systems.
In particular, based on what we said about service composition, [25] can
be classified as a bottom-up approach able to perform indistinctly both or-
chestrations and choreographies. Moreover, the approach in [25] performs
particularly well in dynamic environments.

In conclusion, as regards the standard approaches of service compo-
sition, such as those of orchestration and choreography, they have some
crucial limitations. A major problem of these approaches is that most of
them are based on the assumption that during the composition require-
ments specification, the application designer knows the services to be com-
posed. Besides, some of them, such as WS-CDL and BPEL, remain focused
on the syntax level without considering the semantic aspects of composi-
tion, which are, instead, necessary in context-based applications. Others
7 http://www.bpmn.org/
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standard approaches, such as OWL Web Ontology Language for Services
(OWL-S) 8 and Web Service Modeling Ontology (WSMO) 9, to name a few,
have introduced the management of semantic knowledge in their models to
drive the services’ composition and interoperation but, despite this, they
do not allow processes to be defined at run-time, through dynamic service
composition.

2.2 Design of Service-Based Systems

This section is devoted to a discussion about the design of service-based
systems. It is carried out by reviewing some of the design approaches that
are closer to or have some in common with the solution that we present in
this dissertation.

Considering the advances in service-oriented computing in the last deca-
des and the definition of the Web Services technology with its further
standardization, the development of service-based systems has become in-
creasingly interesting. Indeed, service-based systems allow for combin-
ing numerous services into business applications implementing a business
logic, also complex, that is provided by the collaborations among the in-
volved services. Moreover, defining service-based systems allows the fully
exploitation of the potentiality of Web Services and the generation of a
new potential, as arising from their collaborations.

A considerable amount of approaches for the development of service-
based systems have been proposed. As a consequence, in [48] the authors
have highlighted the importance of defining a sound service-oriented de-
sign and development methodology to deal with contemporary complex and
heterogeneous computing environments. By reviewing methods and tech-
niques used in different methodologies, they come out with a “life-cycle
of the web services development that is of crucial importance to specify,
construct, refine and customize highly volatile business processes from in-
ternally and externally available Web services”, which is currently relevant
today. The implementation of SOA is a complex task that involves dif-
ferent aspects such as networking, artificial intelligence, security, perfor-

8 https://www.w3.org/Submission/2004/07/ 9 https://www.w3.org/Submission/WSMO/
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mance, data management and others [49], requiring for a wide range of
technologies, tools and skills. From a web services life-cycle development
perspective, instead, the focus should be mainly on designing a service-
oriented architecture able to be in line with business process interactions
between trading partners sharing a common goal (e.g., trading of a prod-
uct). The proposed service-oriented design and development methodology
is based on the iterative Web services development life-cycle depicted in
Figure 2.1. The methodology applies well to both Web services and busi-
ness processes. In particular, it focuses on business processes as reusable
building blocks and its objective is that of achieving services integration
and interoperability.

Figure 2.1: Service-oriented design and development methodology [49].

An extended version of this methodology can be also found in [50].
Briefly, the involved phases are:

• the Planning phase to identify the characteristics and the feasibility
of service solutions in a given context, by defining business needs as
goals;

• the Analysis phase to investigate the requirements of a new applica-
tion;
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• the Design phase refers to the design of useful business processes on
top of existing or new defined services. During this phase, service-
oriented design principles must be followed (e.g., service coupling and
cohesion above all) and the service composability must be guaranteed;

• the Construction & Testing phases, include the Web services imple-
mentation (e.g., from scratch or by composing reusable Web services),
the description of their interface, their behavior and their validation
against the requirements;

• the Provisioning phase involves both technical and business aspects
and it supports the service client activity;

• the Deployment phase during which the service provider publishes the
service’s interface and its implementation definitions;

• the Execution & Monitoring phases during which the service is fully
operational and the quality of services of systems and applications
released as service-oriented solutions is measured and monitored.

The ultimate purpose is that of designing and developing enterprise so-
lutions as composite applications involving different services connected via
well-specified contracts allowing to define and automate business processes.

From an abstract perspective, the approach highlighted in Figure 2.1 al-
ways applies to the process of constructing service-based systems of loosely-
coupled, autonomous and reusable services, and it contributes to support
the adaptive capabilities of services, strongly needed today. Obviously, dif-
ferent approaches can implement it in different ways. For instance, each
phase can be more or less automatic. However, up today new dynamic
and advanced models and technologies must be provided and exploited for
implementing this methodology, in order to release service-based adaptive
systems able to operate in open and dynamic environments, also in the
situation in which the exploitable services are not foreseen at design-time.

In the rest of this section, we survey existing solutions for the modeling
of services that are relevant in the area of the provision of service-based
systems. Recent advances in service oriented computing and cloud com-
puting [51], in particular with regard to microservices [12, 13], and open
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services, are providing new opportunities to make significant progress in
developing service-based systems allowing designers to deal with and solve
complex real-world challenges.

In recent years, the cloud computing metaphor has emerged with
the aim, among others, of providing advantages over traditional in-house
IT services, such as an elastic storage and computing resources over the
Internet, through the application of a pay-per-use model. Even if the cloud
computing is quite recent, probably first introduced by Eric Schmidt in
2006 [52], it will probably play an important role in the development of the
future Internet of Services. Moreover, it already represents a research area
itself, with dedicated conferences, workshops, journals etc. Thus, in this
dissertation we focus especially on those challenges in the cloud computing
paradigm that are relevant from an Internet of Services perspective.

In cloud computing environments, the role of services is even more cru-
cial, since everything can be released as a service, from applications to
infrastructure. Indeed, Figure 2.2 shows the cloud computing model en-
abling the future IoS, as reported in [2]. It represents the different provi-
sioning models that can be offered in a cloud environment. The Software
as a Service (SaaS) model allows for on-demand access to applications.
The Platform as a Service (PaaS) model allows for providing platforms on
top of which one can develop and deliver services and applications. The
Infrastructure as a Service (IaaS) model allows for the provision of elas-
tic computing infrastructures (servers, network, storage, etc). Although
this representation is made from a high-level perspective and cloud en-
vironments are not necessarily organized as such, the need for efficient
approaches for services development and management, is quite evident.
The authors in [2] envision the importance of IaaS as the foundation of the
future IoS and give a list of relevant challenges that should be addressed for
meeting the IoS requirements. We agree with their envisioning, especially
as concerns the growing need for computing infrastructure and resources
required by modern service-based systems. This is not a new challenge,
as shown for instance in [53], where autonomic computing techniques have
been applied to automatically solve the resource provisioning problem for
distributed process execution engine. However, it still remains an open
problem that can be more effectively addressed by exploiting the potential
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Figure 2.2: The cloud computing model [2].

of modern IaaS and their ability to provision elastic computing resources.
However, in the context of this dissertation, we particularly focused on a
subset of the IoS requirements and we consider them at the PaaS model
level. Indeed, the design for adaptation framework that we are going to
present in this dissertation can be potentially viewed as a PaaS, since it
might act as a service delivery platform, on top of which adaptive service-
based applications can be defined. The authors particularly highlight the
need for supporting the dynamic (context-aware) service provision, their
resiliency and reliability, among other challenges. As refer to the support
for the dynamic service provision, in [2] the authors claim that to provide
efficient service virtualization, cloud platforms should decouple the service
interface from the service implementation. In this way, services could be
dinamically mapped on the different resources. The context-awareness of
applications and services, instead, is becoming more and more challenging
with the increase in relevance of the information in a given context. Just
think about the wide use of mobile applications, social networks, perva-
sive computing, as context-aware applications adapting their behavior to
the surrounding environment. What is still an open challenges in support-
ing the provision of context-aware applications is the ability to effectively
allow these applications to collect, analyze and exploit context informa-
tion. Lastly, among the challenges listed in [2], one clearly refers to the
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availability of services offered by the Internet. This strongly requires for re-
liable and resilient service-based applications. In the design for adaptation
framework discussed in this dissertation, these two aspects are supported
by the fact that composition requirements are abstracted from the con-
crete services so that, when applications need to satisfy them, they can
look among the currently available services able to accomplish the specific
requirements.

However, also according to the International Data Corporation (IDC) 10,
cloud computing has several issues. We particularly mention a lack of
standardization, a lack of customization, and limited interoperability. Cur-
rently, a standard way to interface with a cloud does not exist, and each
provider exposes its own APIs. The risk is that, even if the cloud is prob-
ably the first enabler of the everything as a service paradigm, it might
emphasize the problem of the heterogeneity among services, by further
adding the heterogeneity of the cloud providers of these services. More-
over, this would also affect the interoperability among services, which is
also still an open challenge.

In [54] the authors propose an architectural level solution to overcome
the current limitations of cloud computing, with respect to customization
and standardization, particularly. The authors claim that the cloud archi-
tecture is of crucial importance when moving into cloud computing. This
architecture should support specific capabilities for migrating traditional
services and applications to cloud computing systems, while also support-
ing all kind of involved users (e.g., cloud vendors, developers, customers).
However, the traditional cloud computing multi-layer architecture, such
as that in Figure 2.2, acts as an obstacle, especially because each *aaS
has its own features, requirements and output, making difficult for ven-
dors to customize services. That’s why the authors propose a dynamic and
customizable architecture, called Template as a Service, that provides, in
particular, a single service layer allowing the interaction with the cloud
resources and services of the different *aaS layers. Each cloud vendor can
define a front-end of several templates where each template gives cloud
services to the end-users.

In the context of this dissertation, we can not but argue about mi-
10 https://www.idc.com/
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croservices and the microservices architectural style [12]. From
when microservices started gaining popularity, many publications have
been made on them, since they inspired numerous research work. Here, we
focus mainly in giving an overview on the microservices paradigm, its rele-
vant features and what has led to the evolution of distributed architectures
into the microservices architectural style.

In [55], in their survey titled Microservices: yesterday, today, and to-
morrow the authors present an interesting overview on the history of soft-
ware architecture, spanning from the diffusion of services, until microser-
vices. While the debate on the role of microservices over SOA is still open
(the question is if they represent an evolution or an implementation of
SOA [56]), the fact on which everyone seems to agree is the basic moti-
vation that led to the spread of microservices. This refers to the need for
moving from monolith applications to distributed applications. “A mono-
lithic software application is a software application composed of modules
that are not independent from the application to which they belong” [55].
It is quite clear that, in the current context of cloud-based distributed sys-
tems, monolithic applications represent an obstacle, due to their difficult
to distribute. In [55] the authors also draw up a list of the most relevant
issues related to monoliths, that we sum up in the following:

• difficulty to maintain and evolve;

• problems with the addition or updating of libraries, which easily re-
sults in inconsistency of the system;

• rebooting of the whole application is required after any single module’s
change;

• the deployment of monoliths requires for a compromise about the final
configuration, because of conflicting requirements on resources of the
constituent modules;

• the scalability of a monolith application is limited by its own structure;

• monoliths represent a technology lock-in for developers.

29



Due to these and other issues, related to the evolution of technologies,
programming languages, development approaches and so on, the microser-
vices architectural style has been proposed as a potential solution to over-
come the limitations of monoliths. In [55], the following definition are
given.

A microservice is a minimal independent process interacting via
messages. A microservice architecture is a distributed application
where all its modules are microservices.

What is important to highlight is that microservices are independent
components, each implementing only one or a few functionalities, deployed
in isolation. The different microservices in a system are, then, coordinated
and composed via messages.

A deeper view on microservices is given in [13]. The author firstly ex-
poses his point of view, according to which microservices emerged as a
trend from real-world use. Then, he describes the main features and key
benefits of microservices. The most relevant are the following: microser-
vices are small fine-grained services, with precise boundaries; they are
autonomous, living as separate entities exposing an API for the communi-
cations with other entities. Among the key benefits of using microservices
with respect to monolithic applications, we particularly highlight (i) the
resilience, since they avoid a failure to cascade; (ii) the scalability, since
they avoid to scale everything as a piece; (iii) the easy of deployment,
since each microservice can be deployed independently from the rest of the
system; and (iv) the composability, since they support the reuse of func-
tionalities that can be composed and consumed in different ways. In [13]
the author also emphasize that the SOA principles [36] that microservices
stress more are loose coupling and high cohesion. Indeed, he states that:
“When services are loosely coupled, a change to one service should not re-
quire a change to another. The whole point of a microservice is being able
to make a change to one service and deploy it, without needing to change
any other part of the system.” At the same time, he also accentuate the
importance of high cohesion, by saying that: “We want related behavior
to sit together, and unrelated behavior to sit elsewhere. So we want to find
boundaries within our problem domain that help ensure that related behav-
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ior is in one place, and that communicate with other boundaries as loosely
as possible.” While defining our design for adaptation approach we also
took into account the loose coupling and high cohesion design principles.
In particular, the loose coupling is guaranteed by the Domain Object ar-
tifact, since each domain object in our model represents an autonomous
and independent service whose dependencies with other domain objects are
dynamically established only on the need. The high cohesion, instead, is
given especially by the definition of the Domain Model as an abstraction of
the operational environment of the system. It allows designers to abstract
the domain concepts of the referred domain. Then, different services in
the environment can provide concrete and diverse implementations of the
same domain concept, if they provide a service whose behavior matches
with the abstract behavior provided by the domain concept.

Although there is a lot of enthusiasm around microservices, as they
represent the novelty in the development of service-based systems, it is
necessary and important to understand when they are effectively useful
and when they are not. To this aim, we have found very interesting the in-
terview reported in [57], where the authors question microservices experts
and insiders, such as Mike Amundsen, James Lewis, and Nicolai Josut-
tis, about their experiences in using microservices. While they essentially
consider microservices as a best practice approach for realizing SOA, they
also underline the need for applying different architectural approaches for
each set of functional and cross-functional requirements. In other words,
their opinion is that microservices should be used if the system that must
be developed really needs it. From their experience, the interviewees sug-
gest to use microservices in order to enable business goals, thus keeping
grounded the implementation in business value. Moreover, what we find
an important lesson, is the suggestion made by Nicolai Josuttis, when he
says that the distribution always has a price to pay. Indeed, more flexi-
bility means also more complexity for the system maintenance. Thus, it
is important to do not switch to distribution if it is not really needed.
Lastly, what we strongly share with Mike Amundsen and we find relevant
for our research work are the two main points that he underlines when
referring to the refactoring of a system. In particular they refer to the
importance of (i) decoupling the interfaces from the internal models, and
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(ii) re-sizing the system components. This is the right way for establishing
standards and practices for defining and implementing interfaces between
service provider components and service consumers. As we will see later
on in this dissertation, these two points are of relevant importance also
in our design for adaptation approach. They mainly relate to the use of
fragments acting as the interface exposed by the system components. In
our approach, fragments implements both the decoupling between inter-
faces and internal models and, at the same time, their use facilitate the
decomposition of big components into smaller ones, each exposing a part
of the whole component’s interface via a subset of fragments.

An interesting work on microservices is presented in [58]. Here the
authors focus on how to support the automatic deployment of microser-
vices, given their dynamic nature. In particular, they propose JRO – Jolie
Redeployment Optimizer that is a tool for the automatic and optimized
deployment of microservices written in the Jolie language [59, 60]. In
fact, before detailing the work in [58], we find relevant to review Jolie too.
Jolie is an open-source programming language 11 for the development of
distributed applications based on microservices, which uses both computa-
tion and composition primitives. In Jolie, (micro)services are the building
blocks of the language and they are characterized for being distributable
and reusable by design. Services communicate by exchanging messages
and, more important, the language is protocol agnostic. Indeed, not only
it supports different protocols but it also provide an API for the devel-
opment of new ones, if required. Jolie also supports different ways for
building complex service-based software systems, such as orchestration,
aggregation, redirection and embedding. For concurrency purposes, mul-
tiple instances of the behavior of a service, modeled as processes, can run.
Processes can directly communicate via message correlation.

Going back to [58], for its execution JRO relies on three main compo-
nents: (1) Zephyrus [61], a tool allowing for the automatic generation of a
detailed architecture, by starting from an abstract description of a target
application; (2) Jolie Enterprise, a distributed framework for deploying
and managing microservices written in the Jolie language; and, (3) Jolie
Reconfiguration Coordinator, a tool that, by interacting with Zephyrus,
11 http://www.jolie-lang.org/
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produce the optimized deployment planning, given a desired configuration
and context.

In conclusion, what clearly emerges from microservices and their ar-
chitectural style is that they offer a sound architecture for scalability and
evolvability. Indeed, and this is probably a current limitation of this ap-
proach, microservices focuses more on the evolution of systems either than
on their adaptive behavior [62].

From our research perspective, we see different commonalities between
our design for adaptation approach and microservices. For instance, we
mention the implementation of the loose coupling principle and the sup-
port for the definition of little-size interoperable components. However, as
opposed to microservices, our approach also support the run-time adapta-
tion of service-based applications. This is due to the possibility of defining
adaptive by design services that further exploit techniques allowing them to
dynamically adapt their behavior to the surrounding environment. What
we find interesting is to deeper investigate if and how we can combine the
two approaches for the development of service-based systems, in order to
exploit the potentialities of both of them. A preliminary investigation in
this direction is reported in [63]. Here the authors define a road-map made
of key research objectives towards the utilization of domain objects as a
model for the microservice architecture. The authors plan to reach each
objective by following an evidence-based strategy, through the implemen-
tation of a concrete case study in the IoT domain. In particular, the ques-
tion they want to reply is the following: “is the domain objects formalism
suited to describe software system to be built according to the microservices
architecture? In other words, is the formalism over-expressive or under-
expressive?”. This is certainly one of the future directions that we will
investigate in consideration of future extensions and improvements of our
approach.

After talking about service-oriented computing, cloud services and mi-
croservices we can not but speaking about DevOps [64]. Indeed, DevOps
emerged as a natural consequence of the last decades evolution of service
oriented computing and it is, in such a way, sustained by the cloud and mi-
croservices paradigms. DevOps is a paradigm, or better a practice, whose
aim is that of guaranteeing a rapid and efficient value delivery to market.
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It strongly promotes a tight collaboration between the developers – the
Dev – and the teams managing the deploy and operation the systems –
the Ops. DevOps is focused on decreasing the gap between the design of
a product and its operation. To this aim, it introduces design and devel-
opment practices and approaches to the operation domain and vice versa.
This is quite clearly shaped by the DevOps application lifecycle, which is
always used to introduce it and which is reported in Figure 2.3. What has

Figure 2.3: The DevOps Application Lifecycle.

to be clarified about the DevOps lifecycle is that, while it provides the De-
vOps process to be followed, it is not constrained to any specific software
development paradigms, tools, languages etc. To the contrary, the lifecy-
cle is mainly based on a set of pillars, such as collaborative development,
accelerated deploy, continuous collaboration and feedback, continuous val-
idation, continuous integration, and it can be implemented in any way a
DevOps team decides. Obviously, there exist many practices or tools par-
ticularly suitable for the realization of the DevOps approach, since they
mostly help in bringing the gap between development and operations, but
their use is not mandatory at all. From our research point of view and con-
sidering the idea behind the design for adaptation framework presented in
this dissertation, the application of the DevOps approach is certainly one
of the future developments to apply to our approach, in order to, above
all, make the most of all the potential and improvements that the DevOps
implementation would certainly bring.

Service-oriented computing shares several characteristics with software
product lines (SPL). In the classic view of software product lines (SPL)
the designer analyzes a software family as a whole and establishes the com-
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mon and reusable assets that form its basic platform, as well as the possible
application-specific customizations [14]. A feature model [15] specifies the
alternative variations and constraints that can exist for each feature.

The integration of services and features have already been investigated
in the literature [65]. In the model proposed in [65], features are opera-
tionalized through atomic or composite services. This model builds on a
two-phase lifecycle that firstly integrates services and features and then,
in its second phase, uses the integrated model to derive a product that
satisfies the end-users desired feature selections.

In [66] different types of development of SPL are distinguished (e.g.,
proactive, reactive and extractive). In [16], instead, the authors propose a
Generative SPL development based on variability-aware design patterns.
The authors started from the consideration that design patterns are al-
ready used to handle variability in the implementation of SPL. However,
they claim that there is not a specific and standard method for the proac-
tive development of SPL exploiting design patterns for defining variable
functionality. They propose their generative SPL development where role
models are exploited. Role modeling allows developers to describe the dy-
namic collaborations among objects, instead of their design. In [16], role
models are used to link design patterns to a variability model, by capturing
their relation.

Although SPL are not a recent approach, they are currently widely used,
even in different application domains, as demonstrated by [67] and [68], for
example. Moreover, it continuously evolves, for instance by adhering to
new methodologies, such as the Agile development, as in [69]. In particular,
in [67] SPL have been exploited to develop a End User Development (EUD)
tool, that is a framework enabling and supporting end users to create
software applications for smart spaces.

In [68], instead, SPL have been applied in the robotics field. In par-
ticular, in this work the authors integrate the cloud robotics and SPL
techniques. While the former deal with low-level aspects, such as algo-
rithms, processors and robots, SPL are used as support for the end users
to deploy and configure complex robotics applications.

Lastly, in [69], Agile practices are integrated into SPL with the aim,
among others, of balancing agility and formalism. Used in combination,
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they allow certain goals, such as improving reuse and productivity, reduc-
ing time to market and decreasing development costs, to be achieved faster.
This last sentence, summarizes the aim and the potentialities of SPL. How-
ever, they do not deal with the management of the run-time adaptation
of the systems they model. This is probably the main reason why they
evolved into dynamic SPL, which we survey in the next section.

Considering the context of this dissertation, we find of current rele-
vance the role played by Open services. Open services are services that
are easy to understand and to access and that can be exploited to develop
applications or can be improved to provide new value-added services on
top of them. When launching and managing a new service, many service
providers choose to do all the work themselves. They are unaware that
there are service providers available to help their tasks, deploying, launch-
ing and managing their service infrastructure and ecosystem and, at the
same time, to manage the access to these new services.

Web APIs are the most common way to specify such services. At the
same time, the combination of semantic technology and Web Services (i.e.,
semantic web services (SWS)) increases the automation degree of automa-
tion in tasks such as the discovery, composition and mediation of services.
To overcome the limitations of SWSs (i.e., the use of non-standard and
unfamiliar languages for description) a model for Linked Open Services
has been introduced in [70] in which services are viewed primarily as RDF
“prosumers”. With the rise in popularity of web APIs, platforms for their
management and customization, called API management platform, have
been provided. These APIs can be combined to build composite applica-
tions and value-added services. However, while advances in web services
and their composition enable automation and reuse, new productivity chal-
lenges have emerged in the case of APIs. The service developer requires
sound understanding of the different service types and access-methods, as
well as being able to format input data, or parse and interpret output data
in the various formats [71] (e.g., XML, JSON, SOAP, HTTP).

ServiceBase [72] proposes a Unified Services Representation Model, and
a “programming” knowledge-base, where common service-related low-level
logic can be abstracted, organized, and reused by other applications devel-
oper. With ServiceBase a set of APIs have been implemented that expose

36



a common and high-level interface to developers for integrating services
in a simplified manner, despite their heterogeneity. Finally, many “smart
cities” initiatives performed or currently executing across Europe are now
working on open platforms, collaborative web tools and interoperable ser-
vices. Some examples are: IES Cities 12, Open Cities 13, and FIWARE 14.

Web services and APIs are widely adopted by programmers to build
new applications in various programming languages on top of open data,
Internet of Things and crowd and cloud services. Organizations like Mash-
ery 15 and Apigee 16 are building on these trends to provide platforms for
the management of APIs. For instance, ProgrammableWeb 17 now has
more than 10,000 API in its directory. These services can be combined
to build composite applications and higher-level services using composi-
tion techniques. However, while advances in SOA, in terms of Web service
description and services composition have enabled automation and reuse,
complete solutions for open services management are yet required. The
open services management requires for complete solutions to support the
development and distribution of new services but there is still a need to
make services easy to understand and to access for third parties.

In the next section, we focus on approaches devoted to guarantee a
certain level of self-adaptation of service-based systems developed through
their application.

2.3 Dynamic Adaptation of Service-Based Systems

In last years, the increasingly growing dynamicity and openness of the en-
vironments in which service-based systems live has posed new challenges
as regards their development and evolution over time. For instance, adap-
tivity, scalability and software reuse are strictly crucial for applications to
keep up with their environment, but they are not yet completely and effi-
ciently handled. Thus, the need for adequate development approaches of
service-based systems has emerged.

Self-adaptation is one of the main concerns in the context of the Inter-
net of Services. It has been studied in different areas, such as Self-Managed

12 http://iescities.eu 13 http://opencities.net/ 14 https://www.fiware.org/
15 http://www.mashery.com 16 http://apigee.com 17 http://www.programmableweb.com
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Systems [73], Multi-Agent Systems [74], Ubiquitous Computing [75, 76] and
Service-Oriented Computing [77, 78]. Kramer and Magee proposed a fa-
mous three layer architecture model [73] supporting the assertion that, to
be self-managed, a system should reconfigure itself to satisfy the changed
specification and/or environment. In [74], instead, the authors propose
Multi-Agent Systems (MAS) to support the engineering of self-adaptive
systems. We provide a detailed literature review about decision-making
and run-time adaptation in MAS in chapter 6, which is devoted to the
extension of our design for adaptation approach to deal with Collective
Adaptive Systems.

In the area of Ubiquitous Computing (UC), we mention [76] that pro-
poses a task-based self-adaptation infrastructure for supporting the au-
tomatic (re)configuration of UC environments. Another approach for self-
adaptation in UC is proposed in [75]. It allows the selection of an appropri-
ate plan, from a library, that can be used to achieve a user goal, by taking
in consideration her preferences and available resources. The approach also
supports the definition of user preferences per goal requests, by deriving
preferences at run-time based on the executed tasks context. However, al-
though the approach uses a component to monitor the execution, diagnosis
and context-aware adaptation mechanisms are not specified.

The need for self-adaptive software also triggered the development of
self-adaptive architectures. The work presented in [79], for instance, rep-
resents a predecessor of all the research work done on both short-term
adaptation and long-term adaptation, better known as system adaptation
and system evolution, respectively. The authors predicted that advances
bringing to self-adaptive software would come from a broad landscape of
research areas specifying different techniques for the effective design and
operation of self-adaptive systems. Moreover, they support “the dominant
role of software architecture in planning, coordinating, monitoring, eval-
uating, and implementing seamless adaptation.” In particular, what we
want to highlight in the work presented in [79] is the following statement:

While technical advances in narrow areas of adaptation tech-
nology provide some benefit, the greatest benefit will accrue by
developing a comprehensive adaptation methodology that spans
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adaptation-in-the-small to adaptation-in-the-large, and then de-
velops the technology that supports the entire range of adapta-
tions.

We claim that, with the design for adaptation presented in this dissertation,
we have taken a lot of steps forward in the direction of a comprehensive
framework supporting the definition of adaptive systems, from their design,
to their evolution, passing through their operation via dynamic adaptation.
Nevertheless, we are also aware that we are still not there, but we think
we are on the right path.

From a service-oriented perspective, the need for self-adaptive appli-
cations led researchers to the definition of self-organizing service-oriented
architectures. For instance, we mention [78], where the authors motivate
and promote self-organizing SOA to overcome the practice of centralized
components and services, and the need of manual tasks in the applications
development. To this aim, the authors consider scalable and decentralized
solutions, while investigating about the increase of automation in different
phases of the whole life-cycle of service-oriented applications, such as, ser-
vice discovery, composition, monitoring and so on. Eventually, they come
out with a roadmap whose aim is that of addressing the definition of a
decentralized, self-organizing, and light-weight infrastructure simplifying
part of the management of the services life-cycle.

Obviously, also in the Software Engineering area self-adaptation is still
a relevant topic, as emerges from [80], and a lot has already be done in
the past decades. In [80], the authors pose their attention mostly on four
essential topics of self-adaptation, namely, (i) the design space of adaptive
solutions, (ii) processes, (iii) from centralized to decentralized control, and
(iv) practical runtime verification and validation, as challenging and open
to new research and investigations. In particular, as we will see in this
dissertation, we believe that the design for adaptation approach that we
propose advances the state of the art concerning three of the four identified
topics in [80], such as the design space, processes and decentralized control.

An approach quite close to our, as concern the model definition and the
exploitation of planning techniques, is presented in [81], where the SAP
Business Objects model is defined. The main idea behind this work was
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to support and automatize both the creation and adaptation of business
processes in dynamic business environments. In order to use technologies
from the planning field, as already done in this context, the authors have
faced the problem of managing the additional modeling overhead caused
by the planning, due to the high cost of designing the planning model. To
overcome this limitation, the authors had the idea to exploit the results
from model-based software development, by applying even the one-to-one
reuse of models built for software engineering purpose. As a consequence,
the Status and Action Management (SAM) model has came out. It is
used both for software development and planning purpose, and it has been
created in the context of the SAP Business By Design paradigm, whose
aim is to develop flexible service-oriented IT infrastructure. It supports the
design and management of changes by enclosing individual functionalities
as software services, which can be easily combined. At the same time, it
supports planning without imposing static workflows. The SAM planning
functionality is integrated into the BPM modeling environment targeted
at the creation of new processes, which is part of the SAP NetWeaver
BPM. Infact, the goal of this work is to adapt the infrastructure to each
SAP customer, to allow them to create their own processes, by flexible
combining provided functionalities. However, the SAM model is not meant
to be used at run-time, but it is thought for being used at design time.

Considering the need for adaptation of systems at the architecture level
and including it as an inner characteristic of their design offers several
potential benefits, such as: (i) an appropriate abstraction level to describe
dynamic changes in the system, (ii) the possibility of having a scalable and
dynamic execution environment that easily deals at run-time with different
types of changes, and (iii) the generality that allows the design of solutions
for a wide range of application domains [73, 24]. Following this principle, in
this thesis work we have proposed an approach that, exploiting advanced
service refinement and re-configuration techniques, supports the design,
development, and operation of service-based systems that are resilient to
a wide range of changes. Various other approaches have been proposed in
this direction. In the following we consider those approaches that might
be applied in scenarios similar to the Travel Assistant presented in this
dissertation.
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We will start analyzing rule-based approaches, since most design for
adaptation approaches fall in this category. We mention MoDAR [18],
a model-driven approach for the development of adaptive service-based
systems. They aim to abstract the variable part of a business process sim-
plifying the process definition by using rules to model its complex structure
and to capture its variable behavior. Then, rules can be linked in specific
cutting points of the base process. In [82], the authors tackled the problem
of the unpredictable execution of service-based applications. They focus on
how to evolve a running service composition proposing a way for modeling
composite services as artifacts that can change at run-time by exploiting
the models@runtime concept [83]. Here, rules are used to model adaptation
needs (events) and adaptation actions, from the design-time phase. How-
ever, in [82] the software engineer intervention is required to manipulate
the run-time model of services and, being the adaptation and application
logic mixed, the model is not flexible. Moreover, rules are not suitable
for managing continuous and unpredictable changes in open environments,
since they need to be continuously revised.

We want to discuss a bit more in detail the just mentioned mod-
els@runtime paradigm. At run-time, service-based systems have to
cope with many different situations and contingencies, which can not be
analyzed and checked entirely at design-time. Managing the variety of
different execution variants requires a specification of variation points at
design-time and binding them at run-time depending on situation and con-
text. A promising approach to managing complexity in run-time environ-
ments is to develop adaptation mechanisms that leverage software models,
referred to as models@runtime [84]. Work on models@runtime seeks to
extend the applicability of models produced in MDE approaches to the
run-time environment. The idea of models@runtime is to leverage models
both at design-time and at run-time for monitoring, dynamic adaptation
and evolution of software systems. Models@runtime has been, and still
is exploited by different approaches. We mention, for instance, the work
in [85], where the authors aim at addressing the problem of managing unan-
ticipated changes in dynamic environment, which may make the system
unable to meet its quality requirements. The solution proposed consists in
automatically evolving the system model to follow the evolution of quality
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parameters over time. The system adaptation envisioned in this approach
leverages on the models@runtime idea by using the model to determine the
system run-time configuration.

Another category of approaches, quite close to our proposal, that emerged
in recent years are artifact-centric approaches. In [19] the authors
present a formal framework defining Business Artifacts. They represent
conceptual entities made of their attributes and states, their tasks model-
ing the services performed on such artifacts, and business rules defined in
ECA style specifying the life-cycle of an individual artifact, as well as the
control logic of a process executed between interacting artifacts. In [86]
instead, the proposed approach focuses more specifically on the specializa-
tion of artifact-centric processes applying both to the individual artifact’s
life-cycle and to the interactions between artifacts. The specialization is
made starting by base process models and the behavior-consistency be-
tween specialized and base processes is assured. Although the work in [19]
supports flexibility and re-usability since it models the behavior of each
artifact through a set of ECA rules, it suffers from the same limitations
of rule-based approaches described in previous paragraph. The approach
in [86] allows processes among interacting artifacts to be specialized differ-
ently depending on the context, but this is not done dynamically during
the run-time phase. Indeed, this work supports more the reuse of business
processes rather than their dynamic refinement.

The adaptation of services shares several characteristics with Dynamic
Software Product Lines (DSPL). As introduced in section 2.2, in SPL
the designer analyzes a software family as a whole and establishes the
common and reusable assets that form its basic platform, as well as the
possible application-specific customizations [14]. Then, a feature model
specifies the alternative variations and constraints that can exist for each
feature. DSPL extend SPL to support late variability that allows adapt-
ing features with no down time and without violating their constraints.
Moreover, the feature model itself becomes a run-time entity that can dy-
namically evolve to satisfy new variability dimensions in the system. In
some work ([87], [88]), the authors exploit the concepts of dynamic software
product lines (DSPL) [20] for the realization of techniques for developing
adaptive service-based systems. In DSPL a software family is analysed as
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a whole and both common and reusable assets are established, together
with the possible customizations of the application. Then, feature models
are used to specify alternative variations that can be used for adapta-
tion. In [87] the authors bring forward the idea of their previous approach,
called DAMASCo [89], which mainly consists in allowing services reuse in
pervasive systems. In DAMASCo, services are accessed via their public
interfaces and context-aware techniques are used for the service discovery,
composition and adaptation. To overcome the limitations of DAMASCo,
due to the unmanaged variability of services, the authors provide an ex-
tension based on both SOA and DSPL, where feature models are used
to represent the variability of the services by modeling families of adapt-
able software products and to allow, as a consequence, the realization of
dynamic service composition in a context-aware manner. In [88] the au-
thors present LateVa whose underlying idea is quite similar to that in [87].
Similar processes containing common and variable parts are called process
variants. A base model defines the common part while fragments defines
concrete variable parts. Base models are annotated with variation points
where fragments can be dynamically entered. In this way, both software
reuse and run-time variability are addressed. Anyhow, the main limitation
of DSPL-based approaches is that they assume a close world where pro-
cess variants (and thus fragments) are pre-defined. For this reason, these
approaches do not fit well in open environments in which system compo-
nents, and their provided functionalities, can enter or leave the system in
any moment.

We now move on evaluating some configurable process modeling
approaches. To start, we mention the work in [90] that proposes a frame-
work allowing for a fast and flexible modeling of business processes. Ser-
vices are integrated in a plug-and-play manner in which activities are se-
lected from a repository and then dropped into a process. However, in [90]
from the design perspective there is not the idea to model adaptable by de-
sign services, but rather to speed up the design. Thus, from an adaptation
viewpoint, only ad-hoc modifications can be managed.

In last years, configurable process modeling approaches are focusing
on how to design processes in order to give them a degree of flexibility,
aimed to support both adaptation and evolution needs. The concept of
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configurable process model has been introduced by [91], and it denotes
configurable models that are obtained by merging different variants of pro-
cess models. In [21], the authors address the problem of making business
processes more flexible in order to adapt to different needs and require-
ments. Considering the state of the art in the area of configurable process
models, the authors aim is to overcome the limitations and issues related to
traditional approaches in the field, in which the variability of processes is
given by merging existing process models into configurable reference mod-
els, with the consequence of adding complexity to the design process. In
contrast, the proposed approach provide an algorithm for merging con-
figurable process fragments instead of entire configurable models. Process
fragments are small process building blocks that can be composed together
and replace an activity in the process. Dealing with fragments instead of
models reduce the complexity and the computation time of the process
configuration. However, this approach is thought for assisting the process
designer by automatically provide fragments to be used in the variability
points of a process, during the design phase. In [22] the authors also fo-
cus on the variability management of process models, in the context of
Process-Aware Information Systems (PAISs) and, in particular, from the
organizational perspective, meant as one of the views of a process model,
together with the control and behavioral ones. In order to provide context-
based process model variants, the authors implement two algorithms, both
based on general concepts, such as abstraction and polymorphism allowing
the process model variants generation to adapt to different scenarios com-
ing from different situations. Also in this case, however, the goal is to help
the designers and practitioners in managing variations of process models
by avoiding redundancy and inconsistency.

Configurable Event-driven Process Chains (C-EPCs) represent the evo-
lution of classical event-driven process chains (EPCs). In order to capture
and manage the variability in EPC process models, C-EPCs identify a set
of variation points in the model and constraints to limit the combinations
of possible variants that can be used in the different variation points [91].

As one could imagine, in the Next Generation Internet era, the growing
number of online resources, data and services led to the rise of methodolo-
gies and tools to create applications by the combination of these resources.
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These applications are referred to as mashups.

A mashup, in web development, is a web page, or web appli-
cation, that uses content from more than one source to create a
single new service displayed in a single graphical interface. The
term implies easy, fast integration, frequently using API and data
sources to produce enriched results that were not necessarily the
original reason for producing the raw source data. The main
characteristics of a mashup are combination, visualization, and
aggregation. To be able to permanently access the data of other
services, mashups are generally client applications or hosted on-
line 18.

To date, there exist different classes of mashups and numerous tools
and research works on them. Most existing tools and approaches focus
on the composition of web-based interfaces and functionalities and they
are addressed also to non-expert end-users, bringing mashups to become a
popular web development paradigm. For the context of this dissertation,
we focus on service mashups. A service mashup is, simply, a value-
added service build from existing services. In particular, we consider the
works in [17], [92] and [93], which are closer to our work.

In [17], the authors focus on the importance of context-awareness and
adaptivity of service mashups in dynamic environments. Indeed, service
mashups are often defined and executed in the Web that is strongly char-
acterized by a high dynamicity. The availability of services frequently
changes by affecting mashups that might need to be reconfigured based on
the execution context (e.g., reputation, organization, location). Thus, the
authors propose semiautomatic reconfiguration and replaceability strate-
gies supporting developers in the redesign of compositions of services be-
hind the mashups. In particular, the proposed adaptation strategy relies on
two main blocks: capabilities and requirements. The former describes non-
functional service properties to determine a service’s applicability in a spe-
cific mashup context. They describe those behavior properties that cannot
be directly derived from the service interface (e.g. reconfigurability). The

18 https://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
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latter specifies the necessary capabilities for a particular mashup. They de-
pend on the current context and define a desirable mashup configuration.
Requirements are defined as event-driven rules. The performed adaptation
process executes monitoring and adaptation phases. The mashup monitor-
ing observes context changes and determines which mashup configurations
are affected. The adaptation is triggered when capability constraints no
longer match the current service configuration. The mashup adaptation
takes into account the set of requirements and determines the set of ser-
vices with the best fitting capabilities, by using utility function. Lastly,
the mashup developer selects among these provided services and she re-
configures the mashup accordingly.

In [92] the authors propose a novel approach that combines the modeling
power of software product line feature models with AI planning techniques
to perform service mashups composition allowing non-expert users to both
build and optimize service mashups. The approach relies on (i) the integra-
tion of services and features proposed in [65] for the modeling, and (ii) the
STRIPS planning approach for the automatic service composition. Essen-
tially, the approach takes as input a feature model configuration, satisfying
structural and integrity constraints of a feature model, as defined by the
user. Indeed, feature models are strategically used because of their high
level of understandability by the users, since they allow them to specify
their requirements by defining the variability of a product family. Then,
to obtain executable service mashups as output, the approach automati-
cally generates a service composition expressed in WS-BPEL, which can
be readily executed by exploiting existing WS-BPEL engines. In partic-
ular, the proposed approach first creates a workflow model that consists
of all the features present in the domain model (i.e., the feature model
configuration and the connected services) through an AI planning prob-
lem. Moreover, the defined workflow is further optimized, through the
introduction of parallelism, before being finally converted into WS-BPEL.

A responsive decentralized composition of service mashups for the In-
ternet of Things is proposed in [93]. In fact, in last years, to facilitate
the development of IoT application, different mashups editors have been
proposed, such as, for instance [94]. These are domain-independent tools
providing developers a visual support abstracting both devices and services
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they can compose together. Other approaches that are taking place, are
those services enabling end-users to create by themselves IoT mashups,
by using event-conditions-actions (ECA) rules. Among these services,
IFTTT 19 is probably the most famous one. In [93], the authors objective
is that of overcoming the static nature of IoT applications that, although
highly responsive, are usually based on pre-compiled mashups, being thus
inflexible. As in our approach, the challenge that the authors want to ad-
dress relates with the highly dynamicity and openness of IoT environments,
made by a large number of devices that may become available or unavail-
able at run-time. The idea on which this work relies on is very simple
and powerful at the same time. It is based on a decentralized goal-driven
composition of pre-compiled service mashups. More in detail, to provide
an abstraction of the environment, on top of which applications can be
defined, the approach uses socio-technical networks (STN). A STN is a
dynamic system of people and things interrelated in a meaningful manner
via specific relations. Then, both people and things can enter or leave the
STN, modify their relations or interact with each other via messages. In
particular, people and things are modeled as goal-driven software agents
and they are further equipped with plans that they exploit to cooperate
with other agents, to dynamically compose IoT mashups and, thus, achieve
their goals.

In summary, compared to our approach,[17] underlines the importance
of the context-awareness and adaptivity requirements when defining service
mashups that otherwise tend to be unsuccessful or misaligned with their
execution environments. The underlying idea of the work in [92], instead,
is quite similar to the idea behind our approach. Indeed, also in this
work we can see the combination between a sound modeling approach,
based on SPL feature models, and a planning approach, in order to exploit
the potentialities of both. Moreover, both [92] and [93] are based, like
our approach, on the abstraction of the referring environment allowing to
abstract composition requirements. In particular, this is done with feature
models, in [92] and with STN in [93]. However, in the majority of service
mashups approaches, the trade-off is that the corresponding applications
rely on static mashups that cannot adapt to services entering and leaving
19 https://ifttt.com/
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the environment at run-time.

Lastly, besides short-term adaptation, long-term adaptation is also part
of the adaptation, meant as an umbrella term. In service-oriented comput-
ing, long-term adaptation is mostly known as service evolution. Service
evolution can be seen as a special case of software evolution, which is
known to be an inevitable and critical part of the software life cycle, as
explained by Lehman in his eight laws of software evolution formulated
in [95]. Researchers have spent significant effort on investigating methods
and techniques for the management of software evolution. In particular,
research into the evolution of component-based systems, such as [96], can
be seen as a precursor for research on service evolution. However, tradi-
tional component-based evolution works under a “closed–world” assump-
tion, which tends to limit evolution to a few entities, and in a centralized
manner. This is not feasible for service evolution scenarios since service–
oriented computing happens in an “open world” [5], and calls for the dis-
tributed, coordinated evolution (co-evolution) of multi-party applications.

Service evolution has been studied by several researchers. Papazoglou
et al. distinguish between shallow changes and deep changes [97],[98].
The problem of shallow changes in service evolution, i.e. small-scale, in-
cremental changes that are localized to a service and/or are restricted to
the consumers of that service [98] is considered solved. However, none of
the existing approaches has solved the problem of deep changes, i.e. the
multi-step co-evolution in a graph of interdependent services. In [97], the
author has classified evolutionary change types in terms of their scope and
effects, and pointed out how they pose different challenges and impact in
very different ways the maintenance of service–oriented applications.

There are several approaches that support the maintenance and evolu-
tion of service–oriented software. For instance, Ryu et al. [99] describes an
approach to handle long-running clients instances when the business pro-
tocol of the service provider needs to change. This is an evolution problem
relevant to our work, in view of an extension of our solution to deal with
service co-evolution (already started in [34]), since we also consider service
protocols, which are a first–class element of the Domain Objects specifi-
cation. In [100], the authors similarly propose an approach that allows
service providers to break their backwards compatibility for evolution pur-
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poses, by managing the conflicts with the service consumers using a set of
refactorings addressing complex changes. WSDLDiff [101], instead, ana-
lyzes the types and the frequency of changes affecting WSDL interfaces,
and provides recommendations to service consumers; its aim is to prevent
reliance by those consumers that are particularly unstable because they
often undergo evolutive maintenance.

The works above offer support to different facets of the evolution prob-
lem. However, they do not directly address deep changes [98], and co-
evolution across that chain. This remains largely an open problem, which
is of increasing importance because of the ever–growing complexity of con-
temporary service landscapes. WSDarwin [102] is an Eclipse plug-in that
attacks the problem of deep evolutionary changes, since it automates the
adaptation of the service clients across the co-evolution chain, when struc-
tural or behavioral changes are made, to the service interface specifications.
However, WSDarwin is a maintenance support tools that operates exclu-
sively at development time.

Our preliminary work on a distributed service co-evolution approach [34],
based on an extension of the work discussed in this dissertation, empha-
sizes the decentralized, dynamic and collaborative management of service
co-evolution; it focuses on alleviating the run-time impact of deep evolu-
tionary changes, by using automation and operating on-the-fly whenever
the semantics of the changes permits. Our solution focuses on structural
and behavioral changes, and do not address at this stage changes deriving
from business policies or regulatory compliance issues.

The level of evolution automation we obtain with our proposal in [34] is
similar to what is advocated by research in self–adaptive software systems,
in particular compositional (a.k.a. architectural) adaptation approaches,
such as RAINBOW [103] and MUSIC [104]. MUSIC, in fact, inspired
the design of our service co-evolution framework, since it already supports
service-based adaptation [105], although in a context of anticipated adap-
tation, with strategies that aim at improving the utility of the system, in
response to a repertoire of known situations.

In conclusion, the need for advancements in service evolution support is
undisputed, just as for all software. A number of open questions remain,
including issues of scalability, transactional update guarantees, security,
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and delineate a rich research landscape.

2.4 Discussion

In conclusion, huge work has been done in the literature in the research ar-
eas of modeling and adaptation of service-based systems and applications,
as surveyed in this chapter. Although the existence of all these works, the
main limitation that we can observe is essentially represented by the fact
that each of them deals with one or a few specific aspects in the consid-
ered research areas (e.g., improving reuse, decreasing development costs,
increasing the system’s flexibility, system’s evolution, service composition,
etc).

To the best of our knowledge, it does not exist a comprehensive and
coherent approach defining a complete life-cycle for the continuous de-
velopment and deployment of adaptive service-based systems with a
huge degree of flexibility and extensibility. An approach allowing the
continuous integration of newly available services and the operation of
systems in open and dynamic environments.

We recall that we concentrate on systems and applications that rely on a
dynamic set of autonomous and heterogeneous services that are composed
dynamically without any a-priori knowledge between the applications and
the exploited services. This strongly supports the loose coupling of services
and allows systems to effectively execute under dynamic circumstances.

These premises highlight the need for approaches supporting both the
definition and the application of systems adaptation, from the early stages
of systems design.

To sum up, the solutions in the literature are limited for one or a com-
bination of the following crucial aspects.

• Low applicability in open environments.

• Portability. What is expected from modern systems is that they are
deployable in different environments without an ad-hoc reconfigura-
tion from the developers.
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• Context-awareness. This limitation affects especially those approaches
meant for the application in closed environments. The deriving sys-
tems are not able to take into account the current state of the envi-
ronment that, instead, is strongly subjected to changes.

• Distance from real services and real execution contexts. This limita-
tion is often observable in research approaches that, as a consequence,
struggle to get out of the realm of research. To the contrary, indus-
trial approaches often suffer from the opposite problem, since it can
be that they strictly relate to services of the companies for which they
have been defined.

• Detachment of adaptation requirements from external services specifi-
cation. This limitation is also connected with the service loose cou-
pling principles and it causes systems to be too much rigid.

• User centricity and personalization. Most approaches focus on business-
centric systems, while modern environments are asking for a shift to-
wards user-centric systems.

• Support for continuous development. This limitation arises as a conse-
quence of the openness of the environments. The continuous entrance
of new services requires for their continuous development and deploy-
ment.

• Scalability of the adaptation techniques. Considering the huge and in-
creasing amount of services, the techniques supporting the adaptation
of systems must be scalable to face the environment dimensions.

This motivates our work that aims at defining a novel design for adap-
tation approach of service-based systems. The approach has been inspired
from [24] suggesting that mechanisms enabling adaptation should be intro-
duced in the life-cycle of systems, both in the design and in the run-time
phases. Indeed, our proposal aims to be the implementation of the idea
that in modern service-based environments adaptation cannot be consid-
ered an exception to be handled, but instead, systems must be adaptive
by design.

51



52



Chapter 3

Design for Adaptation of
Service-Based Systems

The goal of this chapter is that of introducing the reader to our approach
for the development and execution of adaptive by design service-based
systems in the IoS. In particular we present the overall life-cycle of the
design for adaptation approach of systems operating in open and dynamic
environments. The subsequent chapters, instead, are devoted to present
in more details the new design approach for modeling adaptive by design
service-based applications, in chapter 4, and how the defined applications
operate at run-time, in chapter 5.

In the reminder of this chapter we (i) introduce a motivating example,
in Section 3.1, that will guide the explanation in the subsequent chapters;
(ii) we illustrate the overall life-cycle for the development and execution of
service-based systems in the IoS, with the focus on its key characteristics,
in Section 3.2.

3.1 Motivating Example: Travel Assistant Scenario

The scenario that will drive us throughout this dissertation comes from the
mobility domain. In addition to being a particularly suitable domain to
show the challenges of dynamic environments, the mobility domain is also
very relevant both at European and world level. For instance, many past
and running projects have been funded with the aim of providing solu-
tions to support and stimulate a more integrated and sustainable mobility
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(e.g., [6, 7, 8]). The scenario is concerned with the management and op-
eration of mobility services, within a smart city as well as among different
cities/countries. Nowadays, a huge number of users is constantly on the
move. They dispose of a large offer of mobility services. These services may
differ depending on diverse aspects, such as the offered functionalities, the
targeted users, the provider, the geographical applicability scope, etc. In
addition, mobility services span from journey planners for finding traveling
solutions between two or more given locations, to specific mobility services,
such as those referring to specific transport modes (e.g., bus, train, bikes)
or provided by specific transport companies. Moreover, an emerging trend
is that of shared mobility services that are based on the shared use of vehi-
cles, bicycles, or other means. All these services can involve or refer both to
public and private transportation services. Furthermore, mobility services
can offer disparate functionalities (e.g., journey planning, booking, online
ticket payment, seat reservation, check-in and check-out, feedback evalu-
ation, user profiling, and so on). Some functionalities may be peculiar to
specific services and/or require particular devices (i.e., the need for unlock-
ing a bike from a rack is peculiar for bike-sharing services, and a smart-card
might be needed to do it). Often, users must interact with different ap-
plications to exploit the different functionalities required to accomplish a
journey (e.g., a journey planner for planning, one or more mobility services
for booking). In addition, these services are made available through a large
variety of technologies (e.g., web pages, mobile applications), with different
constraints on their availability (e.g., free vs. pay).

From a high level point of view, a journey organization, as seen from a
user perspective, consists of a set of different mandatory and/or optional
phases that must be carried out (e.g., planning, booking, check-in, check-
out). In Figure 3.1, for instance, we give a high level overview of the
possible phases that might be part of a journey organization, together
with some of the possible activities that can be run in each phase.

While these phases define what should be done, how they can be accom-
plished strongly depends on the users requirements and preferences, and
from the specific procedures that need to be followed, as provided by the
available mobility services that will be effectively involved in the journey.
Firstly, a user plans her journey looking for the available (multi-modal)
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Figure 3.1: Overview on the different phases of a journey organization.

alternatives satisfying her needs. Depending on her departure and desti-
nation locations, a journey can be local, in the context of a city, or global
involving different cities/countries. Then, based on the user’s preferred
alternative, this can be a multi-modal solution involving different trans-
portation means, each requiring for different procedures to be followed
(e.g., a bus journey differs from a air journey). Moreover, procedures can
differ also among services of the same kind (e.g., the local bus offer in a city
generally does not require a booking, while long distance bus services do).
Once a planned journey is going to start, the overall procedure continues
through the journey execution. Again, the user must behave according to
the execution rules relating to the selected alternative and the involved ser-
vices (e.g., for an air journey a check-in at the departure gate is required).
In the case in which extraordinary events affect the journey by altering
its normal execution, it can be re-planned and recovery solutions can be
suggested to the user. Additionally, even when a journey is over, mobility
services can provide further functionalities (e.g., request of feedback on
the offered service, offer of promotions for future journeys, management of
reimbursement requests from users).
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In this context, our goal is to implement a system, such as a Travel
Assistant, able to support users in the overall organization and execution
of their journeys, for the whole travel duration. To this aim, different
mobility services need to synergistically cooperate, while adhering to their
own procedures. While the idea of an intelligent travel assistant has already
been figured out in the past, as for instance in [106], our opinion is that
we are still far from making it happen. In particular, the system needs to
satisfy different requirements, as listed in the following:

heterogeneity awareness The system must consider the heterogeneity
of the services in terms of technologies, or in terms of offered func-
tionalities (e.g., REST API vs. SOAP, online booking vs. on board
ticketing);

autonomy awareness The system must take into account the autonomous
nature of the services involved;

openness awareness The system must be capable to operate in open
environments with continuously entering and leaving services, which
are not known a priori (e.g., a new ride-sharing service is available in
the city);

interoperability The system must be capable to propose complex solu-
tions taking advantages of the variety of services (e.g., a user needs of
a unique solution with her booking, payment, train journey, and taxi
ride);

customizability The system provide users with personalized solutions
(e.g., a wheelchair user has preferences on transportation means and
stops);

information accuracy The system must provide up to date and reliable
information and solutions (e.g., temporary changes on a bus route);

context awareness The system must take into account the state of the
environment (e.g., strikes, bad weather, roadworks).

adaptivity The system must be able to react and adapt to changes in the
environment that might occur and affect its operations (e.g., a strike
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affects the user’s train journey and the system offers a new journey
plan).

portability The system must be deployable in different environments with-
out an ad-hoc reconfiguration from the developers (e.g., the travel
assistant must be usable in Trento as well as in Paris).

The idea behind the travel assistant is that of providing a solution for
enhancing mobility services interoperability through their run-time and
context-aware discovery and composition, in order to exploit their poten-
tialities and overcoming their diversity. This would allow users to get
personalized solutions for their journeys, by interacting whit a multitude
of mobility services while using just one application and in a complete
transparent way.

Discussion

One of the motivations that drove this work is that of solving some
of the complex real-world challenges, by trying to overcome the current
criticality related to the service-oriented computing paradigm, arising es-
pecially when it is applied to real-world scenarios. Despite the innovations
and advances of service-oriented computing, the evolving environments in
which service-based systems live introduce new requirements that still need
to be achieved, as it emerged from the scenario. In particular, to guarantee
both the portability of systems and their context-aware applicability and
operation in open and continuous evolving environments, the requirement
of separation of concerns must be accomplished. For instance, the appli-
cation logic must be kept separate from the adaptation logic. While the
former can be predefined, the latter is strongly affected by the run-time
operational context of the system, thus it cannot be foreseen when systems
are designed. Moreover, without the opportunity to know a priori the in-
volved services and the users’ needs, the detachment of the adaptation
requirements from the external services specification is crucial.

The identified requirements typically ask for the definition of several
levels of abstraction, when modeling complex systems. This helps not only
to address separate system requirements and concerns, but also to deal
with and integrate different knowledge over the whole system.
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As a consequence, the intuition behind our approach mainly consists in
the idea of thinking separately about what a system must do and how it
does it. For instance, considering the travel assistant, its provided func-
tionalities (e.g., journey planning, online ticketing, journey monitoring, and
so on) represent what the travel assistant does. One or a combination of
these functionalities might help the users to reach their goals such as mov-
ing around a city, or different cities, getting information about transporta-
tion means, their timetables and their costs, recovering from unexpected
changes in their journeys, and so on. Contrariwise, the concrete implemen-
tation of these functionalities, representing how they might be effectively
accomplished, can vary depending on the execution context, since it can
be provided by disparate real-world services, or a composition of them, in
a completely dynamic way. For instance, let us consider a trivial but ex-
haustive example, in a city context. A bus journey whose execution allows
the user to move from a source to a destination point, by reaching her
goal, will be concretized according to different bus companies services in
different cities. Indeed, while the goal of moving around in a city is quite
general, each city has its own local transport service, involving diverse
transportation companies, that can offer various mobility solutions. And
if we move from a local (e.g., a city) to a global (e.g., the world) scope, the
scenario becomes actually more complex, due to the increase of possible
alternatives and existing services.

3.2 Lifecycle of the Approach

In this section, we present the life-cycle of our approach for modeling and
executing adaptive by design service-based systems that are able to meet
the requirements highlighted in the motivating example. The life-cycle,
graphically depicted in Figure 3.2, gives a complete overview of the different
perspectives of the approach (i.e., system models, adaptation, interaction),
the involved actors (i.e., platform provider, service providers, end-users)
and an abstraction of the main needed artifacts. While illustrating it, we
start to introduce the key elements required for the modeling and operation
of systems, such as the travel assistant. In Figure 3.3, instead, we further
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specify the activities that are performed by the different actors regarding
the definition and exploitation of the system models and the configuration
of the system adaptation. We give a high level description on how these
activities are executed, their input and output artifacts and the connections
among them. Details will be given in the following sections.

We remark here that the approach is domain-independent and it can
be applied in multiple domains (e.g., logistic, traveling, entertainment).
To simplify the approach life-cycle specification, from now on we refer to
the mobility domain, which also represents the domain of the motivating
example of this dissertation.

The presented approach sees the involvement of three main actors. The
Platform Provider, with his team, is in charge to realize, maintain and pro-
vide to third parties a comprehensive platform allowing them to build and
execute adaptive service-based applications on top of it. This can be done
by capitalizing on the services and the enablers exposed by the platform,
for both the design and operation of their applications. Indeed, on top of
the platform, different Service Providers can realize their own applications
(or simply value-added services) as the dynamic combination, the exten-
sion and the customization of the services the platform furnishes (e.g., the
services available in the environment). These value-added services can be-
come part of the platform as well, making it continuously evolving. Service
providers will also rely on the platform for the runtime operation of their
applications, by exploiting advanced execution and adaptation techniques
as provided by the platform itself. Finally, the End-Users are those that
effectively make use of the different applications in their daily lives, by
interacting with their interfaces (e.g., web pages, mobile apps, chat-bots).

In the following, each subsection is devoted to a particular perspective
of the overall life-cycle (e.g., a row in Figure 3.2). For each perspective,
we also highlight the view of the different involved actors (e.g., a column
in Figure 3.2).

3.2.1 The System Models Perspective

From a system’s modeling perspective, each actor has a different view on
the system’s models and is differently involved in the system’s development
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and operation. We start by presenting the view of the platform provider.

Platform provider view. In the following, we are going to specify the
required system’s models, what they represent and how they are defined,
with the aim of realizing adaptive by design service-based systems. We say
that the design of the system (or the basics for a system) is a contribution
of the platform provider and it is made by two distinct but correlated
models: the Domain model and the Domain Objects model.

Given the specific domain in which the platform provider wants to
instantiate the system under development (e.g., mobility), the domain
model is specified by domain experts and it describes the operational
environment of the system. In particular, the domain is modeled as a
set of domain properties describing specific concepts of the domain (e.g.,
bus journey, ticket booking, journey monitoring, journey planning).

Domain experts specify both domain-specific concepts, such as journey
planning, train journey, bike sharing journey (in grey in Figure 3.2 – on
the bottom left side), and general-purpose concepts that are implicitly part
of the domain and that can also be defined on top of the domain-specific
ones, such as the user profile management, the user tracking and so on (in
white in Figure 3.2, on the bottom left side – system models / platform
provider).

Domain properties are modeled as State Transition Systems (STS)
evolving as an effect of the normal execution of service-based applica-
tions, or because of exogenous events in the operational context [107],
[108].

We illustrate these notions with a simple example.

Example. A simple but representantive example of a STS is shown in Fig-
ure 3.4. It refers to the abstract definition of the ride sharing concept, with
its possible states and transitions defining the events allowing the domain
property to evolve from a state to another.

Furthermore, another important contribution from domain experts is
an accurate analysis of the available services that are part of the specific
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Figure 3.4: Ride sharing concept as state transition system.

domain. For this analysis, different aspects can be taken into account, such
as the technologies with which services are implemented and exposed to
the outside (e.g., REST API, SOAP), constraints on their availability (e.g.,
free vs. pay), potential dependencies among them (e.g., to unlock a bike
of a bike-sharing service a smart-card can be required) and their specific
functioning. As outcome of this analysis, the domain experts release a high
level description of the features, behavior, usage and offered functionalities
of the analyzed services.

The idea of keeping separate the domain model from the concrete imple-
mentation of services, besides responding to the need of abstracting from
the real services, is also inspired by the domain-driven design method-
ology [109]. Indeed, the domain-driven design approach is particularly
helpful when designing systems relying on complex domain specific knowl-
edge, as service-based systems often are. Behind the principles it promotes,
there is the idea of leveraging on the skills of the designers, developers and
the domain experts in order to create a scalable and accurate solution for
a domain specific problem. This must be done also by facilitating the
communication among the involved participants. To this aim, the domain-
driven design approach devises the use of a common language and a single
model that reflects a shared understanding of the domain under analysis
across the different experts. We believe that the domain model we just
introduced acts as the shared model on which designers, developers and
domain experts agree and that guarantees as much as possible a common
understanding of the domain in which the service-based system under de-
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velopment will live. Moreover, having a single domain model allows for
the reduction of chances of errors, since the design of the domain objects
model, which we introduce in the following, will be a consequence of the
carefully designed domain model.

At this point, both the domain model and the description of the services
analysis constitute the input for the activity of defining the domain objects
model, accomplished by the system’s developers (Figure 3.3–label A1).

A domain objects model represents a uniform way for defining au-
tonomous and heterogeneous services as domain objects, each imple-
menting a specific concept in the domain model. In other words, devel-
opers wrap-up the services identified by domain experts as the concrete
implementations of the abstract concepts in the domain model.

In particular, domain-specific concepts are usually implemented by domain
objects wrapping back-end services requiring for the interaction with third-
party systems and devices (e.g., train mobility services). To the contrary,
general-purpose concepts (e.g., user profiling) might be realized by defining
new domain objects, by also exploiting the functionalities provided by the
domain-specific ones, if needed. To better clarify the connection between
the domain and the domain objects models, we give some example in the
mobility domain.

Example. If we consider a domain-specific concept in the domain model,
such as the train journey, many train services provided by different train
companies might represent diverse concrete implementations of the same
abstract concept. Indeed, even furnishing the same service, they might do
it by following completely diverse procedures and exploiting different tech-
nologies, thus actually providing diverse implementations. For instance,
some of them can ask for a user login, preceded by the registration of the
user to the service, while others can be used without a user’s identification.
Eventually, all these services can be wrapped-up as domain objects, each
providing its own implementation of the same train journey concept and
exposing their functionalities.

Therefore, the wrapping of heterogeneous services as domain objects
implementing the abstract concepts in the domain model allows us also
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to overcome the typical mismatch among services’ interfaces. In other
words, especially if we focus on domain objects wrapping diverse services
but implementing the same domain property (e.g., two different ride-share
services implementing the same ride sharing property in Figure 3.4), we
can notice that, while the domain property abstracts away from any spe-
cific details about services interface, process or data, each domain object
implementing it will then provide its own implementation of the domain
property, by reflecting the real service it wraps-up. In this way, these di-
verse services can be used indifferently one in place of the other without
giving rise to semantic data interoperability problems.

As noted, the domain object concept is central in our approach. The
core idea is to factorize the capabilities offered by service providers as a
set of building blocks (i.e., domain-objects), which can be easily combined
with each other to give rise to composite services. Relevant (composite)
services will be published so that stakeholders can personalize and turn
them into new available services (i.e. applications). Thanks to this general
approach, we can facilitate services integration and interoperability.

In particular, the domain objects model allows developers to define
services and applications by specifying (1) their offered functionalities
(so-called fragments [110]) defining what a service does and, (2) their
application logic (so-called core process) determining how a service
effectively realizes its functionalities.

Now, the strength of the model allowing services to be adaptive by design
relies on the way in which fragments and core processes (from now on,
simply processes) are modeled.

Indeed, our approach allows the definition of dynamic behaviors. In
other words, the developers can define abstract procedures saying
what might be done, but without specifying how to do it, thus leav-
ing the context-aware specification of these procedures to the runtime
execution of the system. Dynamic behaviors are defined by using the
abstract activity construct, that is an activity specified only in terms
of an abstract goal representing a desired domain configuration to be
reached. Its concrete implementation will be shaped at runtime by se-
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Figure 3.5: Example of a customizable dynamic behavior.

lecting fragments offered by other domain objects in the system, whose
execution lead to reach the goal.

A graphical example of an abstract activity that might be specialized in
different ways, that is by exploiting diverse functionalities, is shaped in
Figure 3.5. This specialization approach represents a flexible connection
strategy among domain objects that enhances services interoperability and
provides a lightweight mode to define relations among services. To give to
the reader a simple example, let consider our travel assistant.

Example. Among its functionalities, it exposes a fragment allowing users
to plan their journeys from a source to a destination point. It does not
implement the journey planning service by itself, but it relies on the avail-
able journey planners existing in the mobility domain environment, that
have been previously wrapped as domain objects. These journey planners,
besides furnishing quite the same service, can have requirements on their
utilization (e.g., global vs. local planners). As a consequence, the travel
assistant can specify an abstract plan journey activity. Then, during its
execution, depending on the specific needs of the user, his/her location and
the journey planners effectively available and useful in that domain, the
appropriate fragments will be selected and injected in place of the abstract
activity, to provide a personalized and accurate solution to the user.

We want to highlight here that, differently from traditional service in-
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terfaces, fragments allow for a partial specification of service interfaces
(because of their use of abstract activities), enabling to model adaptable
processes, that is processes suitable for the execution in dynamic environ-
ments. Moreover, the use of fragments and abstract activities represent a
way to enable the adaptation from the design phase, which is one of the
requirements argued in [24], where the authors suggest the requirements
needed for realizing modern service-based adaptive systems.

Eventually, all the domain objects models defined during the system’s
modeling phase contribute to enrich the system knowledge base where they
are stored.

The whole system is finally represented as a dynamic network of
domain objects, interconnected via their offered and required func-
tionalities, on the need.

We give a simple example to illustrate this feature.

Example. For instance, in the mobility domain, a system such as the travel
assistant, will expose services for planning a journey, verify and booking
multi-modal solutions, monitoring whatever changes and so on, by relying
on the various domain objects available in the system’s knowledge base and
offering the functionalities the travel assistant needs. Different execution
of the travel assistant will give place to different network of domain objects.

We want to highlight here that the activity of wrapping services as do-
main objects (or defining new ones) is not executed only once, and certainly
not only during the initial design of a system. To the contrary, it is a con-
tinuous running activity, due to the continuous discovery and availability
of new services. Moreover, this activity can be performed as a collective co-
development process [111, 112], in a crowd-sourcing style [113, 114], where
each developer contributes to add new interesting services, thus enriching
the system knowledge base.

For these reasons, we say that our approach supports the continuous
development of service-based adaptive systems.

In the software engineering field, we are used to see the expression contin-
uous development referring to the realization of modern software systems.
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Although it is used in many different contexts and with different meanings,
it essentially refers to the increase of automation of the overall software de-
velopment cycle, in some or all its phases. In this dissertation, we consider
the continuous development expression as an umbrella term comprising
several phases of the iterative software application development includ-
ing continuous integration [115], continuous delivery [116] and continuous
deployment [117]. The continuous development process notably sustains
system providers and developers in managing the systems maintenance and
development activities that are particularly challenging in open environ-
ments. Our approach particularly supports the definition and deployment
of new domain objects allowing the system to evolve.

To sum up, we have given an overview on the lightweight and flexible
model for specifying adaptive by design service-based systems based on
the domain object concept. In the next paragraph we will see how ser-
vice providers can exploit representative (composite) services published as
domain objects through the platform and customize them.

Service providers view. The role played by the service providers can
better help the readers in understanding the strengths of the approach.
Their role is that of using and exploiting the tools, the engines and the
models provided by the platform, in order to define, develop and execute
their own service-based systems on top of it. This can be done by select-
ing and customizing the already available domain objects and by defining
new value-added services as domain objects (in red in Figure 3.2 at the
system models level under the service provider column), together with the
corresponding new domain concepts they implement, if not existing in the
domain model.

Example. For instance, in the mobility domain, the platform will proba-
bly expose domain objects referring to journey planning services, different
transport means services, weather forecast services, online payment services
and so on. A service provider can select and customize all or a subset of
these services and exploit them to define a new service, such as a travel
assistant, implementing a new concept, also defined as a combination of
existing ones. For instance, the new travel assistant service will implement
the travel assistance concept, that might rely on the planning, booking and
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travel execution concepts in the domain model.

As stated before, also the domain objects defined by service providers
can be stored in the system knowledge base and made available to the
outside. In this way they contribute to the continuous development of
adaptive by design services and corresponding systems (see Figure 3.3 –
label A2). Moreover, service providers can decide to develop and release
their newly defined services, by using whatever technologies independently
from the platform, such as a chat-bots, web-pages, mobile apps, web appli-
cations, etc (see Figure 3.3 – label A2). For instance, the travel assistant
could be released as a mobile application to better following users as they
move around.

End-users view. End-users are the final beneficiaries of the deployed
service-based applications. Different application instances will be instanti-
ated for different users and each instance will be characterized by its own
network of domain objects instances and its run-time domain configuration,
directly affected by the user it relates to, his/her needs and requirements.
The domain objects network is made by instances of the domain objects
corresponding to the services effectively exploited by the user. A domain
configuration, instead, is a snapshot of the domain at a specific time, il-
lustrating the current status of all its domain properties. Indeed, domain
properties evolve as an effect of the execution of activities in fragments
(e.g., the journey status can change to planned as an effect of the execu-
tion of a journey planning fragment), during the normal execution of the
system, or as a result of exogenous context changes.

3.2.2 The Adaptation Perspective

In this section we describe the adaptation perspective in the life-cycle of
our approach. In order to make service-based systems adaptive-by-design,
two conditions are required: (1) the models adopted for the systems design
must facilitate the definition of dynamically customizable systems behav-
iors, through the adoption of adequate constructs; (2) the approach must
implement or exploit adaptation mechanisms and strategies whose appli-
cation allows for a context-aware and dynamic systems adaptation, during
their execution.
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Platform provider view. From the adaptation perspective, the plat-
form provider must supply all the tools and enablers allowing both the
platform users (i.e., service providers) to define adaptive applications on
top of it, and the applications to effectively perform the adaptation, when
executed. In other words, the adaptation mechanisms and strategies used
by the platform must be exposed in such a way that external users can
benefit from and exploit them.

In the following, we are going to see the specific constructs used dur-
ing the system’s design, allowing the system adaptation to be performed,
through specific adaptation techniques. We want to highlight here that
keeping separate the domain model from the domain objects model al-
lows our approach (i) to implement the separation of concerns requirement
(i.e., adaptation vs. application logic), and (ii) to simplify the specifica-
tion of processes (i.e., fragments and core processes) that must operate in
a dynamic environment. Indeed, the adaptation configuration of systems
strictly relates with the domain model and its connection with the domain
objects model.

Being an abstract representation of the operational environment, on top
of the domain model it is possible to define rich and abstract com-
position requirements. In fact, the framework allows for expressing
realistic and complex composition problems as rich control-flow require-
ments [118, 119]. At the same time, these requirements are abstracted
away, that is, detached from services implementation. This allows for
extracting them automatically, as well as for reusing the same require-
ment for different services or in situations in which the implementation
of services changes constantly.

At a system modeling level, the definition of composition requirements,
used to configure the system adaptation, is realized by defining annotations
labeling fragments and core processes defined in the domain objects making
the system. Indeed, the language used to model the adaptable processes,
besides allowing for the definition of classic work-flow language constructs
(i.e., input, output, concrete, user activities, control-flow constructs), gives
also the possibility to link the domain objects processes with the system’s
domain model, by annotating the processes activities. These annotations
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can be of different types.

Goals describe the desired domain configurations relating to abstract
activities. Other relevant annotations are Preconditions and Effects.
Briefly, preconditions are used to constraint the execution of the activity
it annotates to a specific domain configuration. Effects, instead, model
the expected impact of an activity execution on the system domain,
and are used to perform automatic reasoning.

Examples of annotation are given in the following illustration.

Example. For instance, the goal defining an abstract activity such as Book
a Rideshare will be defined over the Ride Sharing domain property (in
Figure 3.4) as follows: Goal: Ride Sharing = PICK-UP POINT DEFINED. Then, if
we think to a fragment provided by a ride-sharing service and allowing
to book a rideshare, a precondition annotating its first activity might be
as follows: Prec: Ride Sharing = USER CHOICE RECEIVED, stating that the ride-
sharing mobility service must be in the right configuration to accomplish the
booking, that is, the user must have chosen a specific solution to be booked.
If violated, it means that the system is not behaving as expected and thus
run-time adaptation is triggered. Eventually, in the Ride Sharing domain
property effects are those labeling the transitions among states. The effect
of executing the before-mentioned rideshare booking fragment might be Eff:

Ride Sharing.pickupPointDefined.

One of the strengths of our approach, relies exactly on this way of
modeling processes in each domain object. It allows for simplifying the
specification of adaptable processes, by releasing the developers from the
activity of thinking about all the possible alternatives that might occur,
with respect to changes in the domain, availability of fragments and so
on. Moreover, besides being a time-consuming and error-prone activity, in
most cases it is not possible at design time to handle adaptation needs and
extraordinary situations.

For the resolution of adaptation needs occurring at run-time, our ap-
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proach exploits advanced techniques for dynamic and incremental
service composition [25, 120] based on AI planning [47].

In particular, these techniques also deal with services represented as pro-
cesses, thus resulting particularly suitable to be used in conjunction with
our domain objects model and its constructs. The exploited approach im-
plements different adaptation mechanisms and strategies that can be used
to handle the dynamicity of context-aware adaptive systems. Without go-
ing into details, and referring to the chapter 5 to see these mechanisms
in action, we say that the adaptation framework that we exploit [25, 120]
deals with three kinds of adaptation needs:

• The first one refers to the need for refining an abstract activity when
executing a process. This is made by triggering the refinement
mechanism whose execution allows the framework to automatically
find and compose available fragments provided by other domain ob-
jects in the system by defining an executable process whose execution
guarantees to reach the goal of the abstract activity.

• The second refers to the violation of the precondition of an activity.
In this case the local adaptation mechanism is performed. Its
aim is that of bringing the system to a domain configuration where
the execution can be resumed.

• The third refer to the need for fulfilling a compensation goal labeling
an activity. In this case the compensation mechanism is applied.
It allows the system to dynamically provide a context-aware compen-
sation process that is simply a composition of fragments selected by
taking into account the current context and whose execution fulfills
the compensation goal.

Furthermore, these mechanisms can also be combined together by real-
izing adaptation strategies. These allow the system to handle more complex
adaptation needs. These mechanisms and strategies have all been imple-
mented in an adaptation engine able to manage them [121].

Eventually, the platform provider is in charge of defining the adaptation
mechanisms and techniques used in the platform. The platform provider
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must also provide to the platform’s users a way to use all the required
adaptation tools, to allow them to understand and exploit the adaptation
techniques, when defining their applications on top of the platform (see
Figure 3.3 – label B1). In conclusion, we want to highlight here that other
adaptation approaches can be exploited in our framework, as an alternative
or in addition to the AI-based planning approach that we actually use.

Service providers view. Different service providers can exploit the
platform for defining their own applications or simply new value-added
services. To this aim, service providers have just to configure the adapta-
tion mechanisms provided by the platform in the specific domain of their
services and/or applications (see Figure 3.3 – label B2). In other words,
service providers can annotate the processes in the domain objects, by
making their applications compliant with respect to the domain model
they deal with and to the functionalities that their applications are ex-
pected to perform. As a result, service providers will be able to release
adaptive service-based applications that can be customized and executed
on top on the platform.

End-users view. The end-users finally make use of the available adap-
tive applications. They are those effectively enacting the adaptation tech-
niques (see Figure 3.3 – label B3). Indeed, adapted application instances
are dynamically created, customized and run over their requirements, based
on their applications usage. This happens thanks to the adaptation mech-
anisms (e.g., local and refinement) that are effectively triggered, and then
performed, during the users interactions with the applications. Once the
specific user execution environment is known, appropriate fragments (i.e.,
services) can be selected, composed and exploited to satisfy the different
user’s goals. At the same time, exogenous changes are also managed and
solved taking into account the specific execution environment.

Moreover, an important aspect of our approach, which will be detailed
and analyzed in chapter 5, is the capability of domain objects to dynami-
cally extend their knowledge on the execution environment, when executed,
thanks to the exchange of fragments with other domain objects, allowing
them to discover new domain concepts (e.g., domain properties in the do-
main model).
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3.2.3 The Interaction Perspective

Our approach sees the involvement of three main actors, the platform
provider, service providers and end-users. Each of them is differently in-
volved in the development, operation and usage of the system and they
differently interact with it (see the interaction level in Figure 3.2).

Platform provider view. The platform provider, together with his
team, is in charge of realizing the platform and its enablers, and then using
it to realize and provide different adaptive service-based systems or simply
adaptive services. In order to allow external service providers to exploit
these systems through the platform, for turning them into new value-added
services and/or applications, the platform provider makes available all the
tools, the modeling environment and languages, the access to the different
engines running in the platform, through an access console that can be
realized in different ways, by using different technologies.

Service providers view. The service providers perspective, play a
double role. From one side, they act as platform users. Indeed, they use
the platform (i.e., its tools, enablers, engines, services) as a third-party pro-
vided service. They can exploit all the services modeled as domain objects
and stored in the system knowledge base, modeling both domain-specific
and general purpose services in a given domain, to develop their own value-
added services. To this aim, service providers access to and interact with
the platform’s console. From another side, service providers can decide
to release their value-added services as systems and/or applications. To
this aim and from an interaction point of view, they can decide about the
technologies to use for developing their applications (e.g., mobile apps, web
applications) and also define the corresponding user interfaces. While for
the back-end of their applications service providers exploit the platform,
for the front-end they are independent from the platform and its console.

End-users view. The end-users, finally, are those effectively using the
different applications developed on top of the platform. They are not aware
of the platform itself and exploit it in a completely transparent way. End-
users just interact with the available applications through their interfaces,
also using different devices, such as their smartphones, laptop, tablet and
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so on, depending on the specific technologies through which the service
providers released their applications.

3.3 Discussion

After the definition of the whole life-cycle of our design for adaptation
approach, we can recognize that realizing adaptive service-based systems,
applications, or simply value-added services, through the combination of
functionalities provided by the available services in a given domain, demand
mechanisms enabling the adaptation, introduced both in the design and in
the runtime phases. Indeed, we have seen why pre-defining all the possible
combinations and interactions among services is of dubious interest in open
and dynamic environments. Since these environments are characterized by
continuous changes, such as the entrance or leaving of services, changes in
the behavior of these services, changes in the environment itself, involve-
ment of proactive users and so on, every pre-defined behavior or procedure
of a system is destined to become obsolete or inapplicable as soon as the
context changes. Moreover, a user’s goal can be reached through differ-
ent composite services, which are not always available, since they strictly
depend on the availability of the component services making them. The
intuition behind our approach is that of defining abstract procedures to
describe the behavior of a system while leaving their customization and
context-aware specification as close as possible to the run-time execution
of the system. In such a way, the concrete specification of procedures can
consider the most up-to-date version of their execution environment, by
fully avoiding of being obsolete or inapplicable because of the unavailabil-
ity of services.

In this context, applicable approaches are those giving to service providers
the possibility of defining dynamically customizable behaviors for their sys-
tems, from one side, and a dynamic management of the services exploited
in the specific domain and their interactions, from another side, in order to
reflect the dynamicity and the openness of the environment in which sys-
tems live. However, this is challenging to be realized and it also requires a
high degree of automation.
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In this direction, the approach that we propose in this dissertation is
characterized by the following key aspects:

• it implements the separation of concerns (adaptation vs. application
logic) by using (1) the domain model to abstract the domain concepts
and to specify, on top of it, rich composition requirements, and (2)
the domain objects model for the uniform specifications of the au-
tonomous and heterogeneous services and their dynamic interaction.
The domain objects model also facilitates and allows for the continu-
ous development and deployment of new services, as domain objects,
that can be easily integrated in the existing systems, to face the open-
ness and dynamicity of the environment;

• through the exploited models, the approach allows for the specifica-
tion of services behaviors and functionalities as processes, with the
additional possibility of defining dynamically customizable processes,
that can be concretely specified at run-time, to guarantee the context-
aware execution of systems;

• for the context-aware customization of processes and the run-time
adaptation of systems in case of exogenous changes, the approach ex-
ploits automated planning techniques for the dynamic and incremental
service composition [25], which perform well in dynamic environments.

The approach that we are going to present in this dissertation, is a
proposal to solve the previous open issues and to provide a complete so-
lution for services management and exploitation. Thanks to this general
approach, we can facilitate services integration and interoperability, thus
better exploiting their functionalities and meeting the user needs. By fol-
lowing our approach, a novel ecosystem of customizable services that are
easily personalized in different contexts and user needs, can be designed,
deployed, adapted and made available to the interested stakeholders that
want to use them to create new services and applications. Indeed, it offers a
lightweight-model, with respect to the existing languages for service model-
ing and adaptation, and it can be implemented with every object-oriented
languages.
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In the next chapter we describe and formalize the models for designing
adaptive service-based systems, while chapter 5 is devoted to show their
execution and adaptation in action.
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Chapter 4

Adaptive Service-Based Systems:
Modeling

This chapter is devoted to the modeling aspects of adaptive service-based
systems. As introduced in chapter 3, one of the intuitions behind the
design for adaptation approach, proposed in this dissertation, is that of
introducing adaptation mechanisms in the life-cycle of systems, by starting
from the design phase. Our opinion, indeed, is that designing systems
with the adaptation in mind is the only way for making adaptive by design
systems, by avoiding to handle the adaptation as an exception. Of course,
this must be supported by the modeling approach.

The central idea of our approach is the use of two separate models,
namely the domain model and the domain objects model, implementing
the separation of concerns principle (adaptation vs. application logic).
The domain model describes the domain of the specific service-based sys-
tem (e.g., mobility), by defining its concepts (e.g., journey planning, bus
journey, ride-sharing journey, ticket payment, etc). The domain objects
model, instead, allows the specification of services as concrete implementa-
tions of the domain concepts (e.g., existing bus company services, such as
Flixbus 1, existing journey planners, such as Rome2Rio 2). Keeping the two
models separate allows the conceptual definition of the operational seman-
tic of services (i.e., in the domain model), over which composition/adap-
tation requirements can be expressed, by detaching this semantic from the
different implementations that might be provided by a plethora of different
services (i.e., in the domain objects model). Moreover, by taking advan-
1 https://www.flixbus.com/ 2 https://www.rome2rio.com/
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tage of the separation of models, the whole approach provides support for
the definition of dynamically customizable services. This allows for the
context-aware customization of services in specific domains, through the
dynamic and automatic discovery and selection of the better functionalities
(or composition of functionalities) to be exploited.

The following chapter is mainly based on the work in [27], where the
modeling approach was firstly introduced, and on the work in [28], where
it was further formalized. We build on top of this work and we further
extend it. We start with an overview on the general framework and its
models with their core elements, in section 4.1. Afterwards we give formal
definitions of the models elements, in section 4.2. Chapter 5, instead, will
be devoted to the runtime perspective.

4.1 General Framework and Approach

In this section we present the design side of our approach for modeling
and executing adaptive service-based systems. We informally describe the
core elements of the design for adaptation models (i.e., domain objects
model and domain model) and give examples on how they might be used
to model the Travel Assistant described in section 3.1. We start by giv-
ing an overview of the travel assistant system in section 4.1.1, to look at
the different services and service providers involved, in order to give to
the reader an idea of the system complexity and dynamicity. Then, we
introduce the general approach in section 4.1.2.

4.1.1 Travel Assistant: a System Overview

As introduced in section 3.1, the scenario that will drive us throughout
this dissertation comes from the mobility domain and it concerns with
the management and operation of mobility services, within a smart city
as well as among different cities/countries. It foresees the involvement
of different types of mobility services, from journey planners, to specific
transportation means services, until shared mobility services, each referring
both to public or private providers. General-purpose services are also part
of the mobility domain, such as online payment services that are often
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required for the online booking of travel tickets. Furthermore, mobility
services are provided via different technologies (e.g., web pages, mobile
applications), and they can offer disparate functionalities (e.g., journey
planning, booking, online ticket payment, etc), made available through
diverse procedures. From a user perspective, they must often look for and
interact with different applications to exploit the different functionalities
required to organize and accomplish a journey (e.g., a journey planner for
planning, one or more mobility services for booking, etc).

The goal of the travel assistant is that of supporting users in the overall
organization and execution of their journeys, by supporting the synergistic
cooperation among the different mobility services.

However, if the aim is to deliver “smart mobility services” to users, these
services cannot be operated each by itself, but should become part of an
integrated mobility solution, the travel assistant system. This system sup-
ports service users (citizens, tourists) and providers (municipality, drivers,
transportation companies) in their daily operation and management of the
different mobility services. Moreover, the travel assistant also discharges
users from looking for specific applications for each specific need, by al-
lowing for the interaction with only one system, released with whatever
technology (e.g., mobile app). Such a system transparently and dynami-
cally discovers, selects and combines the appropriate services for the spe-
cific users requests. In addition, the travel assistant should address the
requirements listed in section 3.1. Among them, we remark that it should
be generic enough to guarantee its portability among different cities. This
would allows the system to be used everywhere a user goes, by following
her while moving around.

Figure 4.1 presents a partial and conceptual overview of the different
services and service providers in the system, restricting its scope to a subset
of the potentially provided mobility services (i.e., travel assistant service,
ride sharing service, bus service).

Example. If we consider the part of the system related to the travel as-
sistant, we notice that the management of this service needs to handle the
registration of users (i.e., passengers, drivers, etc) and their access to the
system (User Profile Management component), the planning and organization

81



TRAVEL ASSISTANT
SERVICE

TRAVEL ASSISTANT
MANAGER

SMART
CARD

SMART 
STREET SIGNS

OPEN 
STREET

MAP

SMARTPHONE

INTERMODAL
PLANNER

BUS SERVICE
RIDE SHARING 

SERVICE

AIRPORT 
SERVICE

ONLINE PAYMENT 
MANAGER WEATHER 

STATION
WSN 

MANAGER 

BUS
MANAGER

RIDE SHARING
MANAGER

BUS 
SERVICE

TRAIN 
SERVICE

ROUTE 
MANAGER

Plan safe footpaths, 
cycle paths, car paths

Manages 
payments

Manage smart objects; 
bike/users position

Manage 
daily routes,
accident

USER PROFILE
MANAGEMENT

Geo-locate 

Manage users 
registration, 

profile, 
authentication

Manage ride-share 
organization

Manage 
Bus route

PAY PAL

ONLINE 
BANKING

TAXI 
SERVICE

PARKING 
SERVICE

OPEN 
MOVE

FIDELITY 
CARD

PARKING
CARD

Figure 4.1: Travel assistant: a partial overview of the system.

of journeys (Intermodal Planner component) and the organization of routes
(Route Manager component) taking into account the needs of users but also the
route safety (e.g., presence of sidewalks, traffic situation). The daily oper-
ation of the service requires to handle journey planning requests from users
and the mobility offers from cities, private users and transportation com-
panies (Travel Assistant Manager component), the confirmation of journeys
and the tickets payment (Online Payment Manager component), the tracking
of transport means and passengers position (Wireless Sensor Network (WSN)

Manager component), as well as managing possible exceptions and changes
(e.g. find a substitute for a passenger in a ride-share journey, change
the bus route due to roadworks, suspend the route due to traffic condi-
tions). Some of these services might be in common with the ride-sharing
and bus services (e.g. Route Manager, User Profile Management components).
This would allow not only to avoid replication, but also to enable synergies
and collaboration among the different services (e.g., exploit the ride-sharing
service as an alternative to the bus in case of a strike).

A first characteristic of the system that clearly emerges from this ex-
ample, is the variety and heterogeneity of services that the travel assistant
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needs to cope with: from domain-specific functionalities related to the mo-
bility domain (e.g., management of bus, train and car routes, support for
intermodal planning) to general-purpose ones (e.g., user profile and access
management, user tracking); from back-end functionalities (in grey in the
Figure 4.1) that need to interact with third-party systems and devices (e.g.
online payment of tickets, interacting with smart objects and sensors) to
front-end ones (e.g., mobile and Web apps to be accessed by the different
users). Moreover, the travel assistant needs to deal with the dynamicity of
the scenario, both in terms of the variability of the actors and services in-
volved, and of the context changes affecting its operation. In particular, the
system should be open and extensible, which means that new services (e.g.,
a new bike-sharing service, a new ticket payment service, a new tracking de-
vice), as well as changes in existing services (e.g., changes in a service login
procedure, changes in any third-party system) should be easily managed
and require minimum maintenance. This is made particularly challenging
by the collective nature of some mobility services (e.g., ride-sharing service)
to be provisioned, since their operation requires the interaction and col-
laboration of different autonomous actors (drivers, passengers), and thus
results in a high degree of connection and inter-dependencies among the
different system services (as shown by dotted arrows in Figure 4.1).

In the next section we will show how the design for adaptation approach
proposed in this dissertation addresses these challenges and enables the
development of an adaptive by design travel assistant.

4.1.2 The Design for Adaptation Approach

In this section, we introduce the domain model and the domain objects
model. As introduced in chapter 3, the former describes the operational
environment of the system, in a given domain, while the latter gives a uni-
form representation of the autonomous and heterogeneous services making
the system, each implementing a specific concept of the domain model.
Moreover, through the chapter we provide a mapping between each new
introduced element and a corresponding example within the travel assis-
tant system, to help the reader in understanding the models and their
interconnections.
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The travel assistant system is modeled through a set of domain ob-
jects representing the services of the system (e.g. Travel Assistant, Journey

Manager). As depicted in Figure 4.2, each domain object is characterized
by a core process, implementing its own behavior, and a set of process
fragments, representing the functionalities it provides.

Figure 4.2: Domain Object Model.

Fragments [110, 122] are executable processes that can be received and
executed by other domain objects to exploit a specific functionality of the
provider domain object. Exposed fragments and the core process commu-
nicate through the execution of input/output activities. This concerns the
fact that fragments act as an interface for the internal behavior of a do-
main object, thus they need to interact with the core process to eventually
accomplish the functionalities they model.

Unlike traditional system specifications, where services’ behavior are
completely specified pre-deployment, our approach allows the partial
specification of the expected operation of domain objects through ab-
stract activities that are specified in terms of the desired behavior
(i.e., goal) and are refined at run-time according to the fragments of-
fered by the other domain objects in the system.

We illustrate this notion with a simple example.
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Example. For instance, in Figure 4.3 we show a portion of the travel
assistant system made by a subset of its services and their potential de-
pendencies. Within this portion of the system, the Journey Planners Manager

domain object can partially define the functionality allowing the planning
of a journey. Then, different journey planners can join the system and
publish different planning procedures, covering areas of varying size and
boundaries (i.e., local and global journey planners). Only at run-time,
when the user’s provided source and destination points are known, (e.g.
they may belong to the same city, to different cities, to different coun-
tries), the Journey Planners Manager will discover the fragments offered by the
specific domain object modeling the most appropriate journey planner for
the specified input, and it will use these fragments to refine its abstract
activity and to eventually get the list of available multi-modal alternatives.

An important aspect of the design model that strongly supports the
system’s dynamicity consists in the fact that abstract activities can
be used in the core process of a domain object as well as in
the fragments it provides.

In the first case, the domain object leaves under-specified some activi-
ties, in his own behavior, that are automatically refined at run-time. The
latter case is more complex, and enables a higher level of dynamicity, since
it allows a domain object to expose a partially specified fragment whose
execution does not rely only on communications with its core process but
also on fragments provided by other domain objects, thus enabling a chain
of refinements.

These dynamic features offered by the framework rely on a set of domain
concepts describing the operational environment of the system, on which
each domain object has a partial view.

In particular (see Figure 4.2), the internal domain knowledge cap-
tures the behavior of the domain concept implemented by the domain
object, while the external domain knowledge represents domain
concepts that are required to accomplish its behavior but for whose
implementation it relies on other domain objects. Domain knowledge

85



TRAVEL ASSISTANT 
APPLICATION

CORE

ROUTE MANAGERCORE FRAGMENTS

Plan journey

Book journey

TRAVEL ASSISTANT

ROUTE MANAGERCORE FRAGMENTS

Select planner

Fragment Y

JOURNEY PLANNERS 
MANAGER ROUTE MANAGERCORE FRAGMENTS

Refine Journey

Fragment Z

JOURNEY MANAGER

Travel
assistance

Data 
viewer

ROUTE MANAGERCORE FRAGMENTS

Define data pattern

DATA VIEWER

Data 
viewer

Show data

Travel
assistance

Planners 
managem.

Planners 
managem.

journey 
managem.

journey 
managem.

Local
planning

Global
planning

FRAGMENTS

VIAGGIA 
TRENTO

Plan journey

Set prefs

Local
planning

FRAGMENTS

ROME2RIO

Plan journey

Geo-locate

Global
planning

FRAGMENTS

FROM A TO B

Plan journey

Show details 

Global
planning

Ride 
sharing

Bus
journey

Train
journey

FRAGMENTS

BLA BLA CAR

Check for 
rideshare

Pay 4 rideshare

Ride 
sharing

FRAGMENTS

FLIXBUS

Book journey

Pay ticket 

Bus
journey

FRAGMENTS

Book journey

Pay ticket 

Bus
journey

Payment
Managem.

OUIBUS

Payment
Managem.

FRAGMENTS

PAYMENT 
MANAGER

Online 
payment

Payment
Managem.

Figure 4.3: Portion of the travel assistant system.

(both internal and external) is defined through domain properties, each
giving a high-level representation of a domain concept (e.g. journey
planning, ride-sharing journey).

Domain properties are modeled as state transition systems and their evo-
lution represent the behavior of the domain concept that they model. At
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this point we must clarify that even if in Figure 4.2 we show the domain
properties as part of domain objects, which is actually true, we say that
domain properties exist independently of the domain objects implement-
ing or relying on them, if any. Indeed, they are identified and defined by
domain experts before the system is developed (i.e., before domain objects
are designed) and they make the before-mentioned domain model. For sim-
plifying the graphical representation of complex systems made by different
interconnected domain objects, through this dissertation we draw domain
properties as part of domain objects.
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Figure 4.4: Domain properties modeled as state transition systems.

In Figure 7.15 we provide some examples of (simplified) domain prop-
erties.

Example. Consider for instance the domain property Travel Assistance,
which models the typical behavior of a travel assistant used to plan journeys,
to let the user select her preferred alternatives, to book it, if required, and fi-
nally to execute the journey, all by using the mobility services offered by the
travel assistant. First of all, the journey needs to be planned (JOURNEY PLANNED
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state), after that a specific request from the user arrives (REQUEST RECEIVED

state). Then, the user receives the list of possible alternatives (ALTERNATIVES
SENT state) and she chooses the preferred solutions among them (USER CHOICE

RECEIVED state). At this point her plan can be further refined by considering
the transportation means effectively composing the chosen alternative (PLAN
REFINED state). If required by the specific transportation means involved in
the user’s choice, the plan can be also booked (PLAN BOOKED state), otherwise
the user can start her journey (JOURNEY EXECUTION state) until she reaches her
destination (ASSISTANCE COMPLETE state). During the normal behavior of the
application, a domain property may evolve as an effect of the execution of a
fragment activity (e.g., if the journey planning activity goes well, the travel
assistant moves in the state JOURNEY PLANNED). Otherwise, if something unex-
pected occurs, a domain property may also evolve as a result of exogenous
changes (e.g., because of roadworks the bus is not passing). Eventually, a
domain configuration is given by a snapshot of the domain at a specific time
of the journey, capturing the current status of all its domain properties.

The link between the domain model and the domain objects model is
given by annotations labeling activities in processes and fragments.

Indeed, annotations represent domain-related information and they implic-
itly define a mapping between the execution of processes and fragments and
corresponding changes in the status of domain properties. Furthermore,
annotations are quite intuitive because they simply reflect the functional
properties of the services in the specific application domain. We remark
here that thanks to the use of annotations as a link between an abstract
concept (i.e., a domain property) and (one or more of) its implementations,
it results easy to modify a scenario to consider new and different service
implementations. Indeed, this can be done by properly annotating services
(i.e., processes in domain objects) without the need of changing the domain
properties and the control-flow requirements defined over them.

Annotations can be of different types. In particular, each abstract activ-
ity is defined in terms of the goal it needs to achieve, expressed as domain
knowledge states to be reached, and it is automatically refined at run time,
considering (1) the set of fragments currently provided by other domain ob-
jects, (2) the current domain knowledge configuration, and (3) the goal to
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be reached. In particular, goals are defined over the external domain knowl-
edge, since they refer to functionalities which belongs to domain properties
implemented by other domain objects. They can be defined as disjunctions
of conjunctions over states of domain properties, as we will see further on.

Example. For instance, in Figure 4.5, we report an example of a frag-
ment modeling the functionality of paying for a rideshare (Rideshare Payment

fragment), as it might be exposed by a ride-sharing mobility services, such
as BlaBlaCar 3. The activity Pay for rideshare is an abstract activity, rep-
resented with a dotted line, labeled with the goal G1: PAYMENT MANAGEMENT =

PAYMENT ACCOMPLISHED that is defined over the Payment Management domain prop-
erty. Indeed, even if the BlaBlaCar service provides the functionality for
paying online for the agreed ride-share, it does not implement it by itself,
but it relies on typical payment services for the secure payment over inter-
net.

In addition to goal annotations, activities in processes and fragments
are annotated with preconditions and effects. Preconditions constrain the
activity execution to specific domain knowledge configurations.

Figure 4.5: Example of a fragment modeling the functionality of paying for a ride-share,
as exposed by a ride-sharing mobility services (e.g., BlaBlaCar).

3 https://www.blablacar.it/
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Example. For instance, in Figure 4.5, the precondition P1: RIDE SHARING =

PICK-UP POINT DEFINED says that, to execute the fragment Rideshare Payment, the
domain property RIDE SHARING (see Figure 7.15) must be in the state PICK-UP

POINT DEFINED. This precondition constrains the execution of the Rideshare

Payment fragment only in those configurations in which the driver and the
passenger already agreed on the details of the ride-share and they defined
the pick-up point.

Effects, indeed, model the expected impact of the activity execution
on the domain and represent its evolution in terms of domain properties
events.

Example. For instance, the effect E1: RIDE SHARING.PayRideshare in Fig-
ure 4.5, models the evolution of the RIDE SHARING domain property (see Fig-
ure 7.15). It is caused by the event PayRideshare, which is triggered by
the Receive payment ack activity in the Rideshare Payment fragment (in Figue
4.5) of the BlaBlaCar domain object, and it brings the property in the state
RIDESHARE PAYED.

Preconditions and effects are used to model how the execution of frag-
ments is constrained by and evolve the domain knowledge. This informa-
tion is used to identify the fragment (or composition of fragments) that
can be used to refine an abstract activity in a specific domain knowledge
configuration.

Example. For instance, as shown in Figure 4.3, the RIDE SHARING domain
property belongs to the internal domain knowledge of the BlaBlaCar domain
object and to the external domain knowledge of the Journey Manager. This
property can be used to specify goals of abstract activities within the Journey

Manager (e.g. to handle a ride-share journey). Similarly, fragments offered
by the BlaBlaCar domain object are annotated with preconditions and effects
on the RIDE SHARING domain property, as just seen for the fragment Rideshare

Payment.

Potential dependencies (soft dependencies , from here on) are estab-
lished between a domain object and all those domain objects in the
system whose modeled domain concept (internal domain knowledge)
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matches with one of its required behaviors (domain property in its ex-
ternal domain knowledge).

Figure 4.3 shows the soft dependencies (dashed arrows) among some of the
domain objects related to the travel assistant system. A soft dependency
between two domain objects becomes a strong dependency if, during the
system execution, they inter-operate by exchanging their fragments and
domain knowledge. In the following chapter on the execution of service-
based systems, we present a run-time scenario and show how some of these
dependencies become strong dependencies (represented as solid arrows)
after the refinement of abstract activities.

Eventually, the resulting adaptive system can be seen as a dynamic net-
work of interconnected domain objects which dynamically inter-operate.
In particular, the network takes the form of a hierarchy of domain objects,
where the abstract activities refinement mechanism enables a bottom-up
approach allowing fragments, once they are selected for the composition,
to climb the domain objects’ hierarchy to be injected in the running pro-
cesses. Within the hierarchy, there may be essentially three kinds of do-
main objects: leafs domain objects model service consumers that do not
expose any functionalities but need only to exploit other domain objects
fragments to refine their processes (e.g. Travel Assistant App in Figure
4.3); roots domain objects model pure service providers by offering func-
tionalities and without requiring external knowledge (e.g. BlaBlaCar in
Figure 4.3); generic domain objects model, instead, act both as consumers
and providers, so they have both the internal and external domain knowl-
edge as well as abstract activities in their processes (e.g. Journey Planners
Manager in Figure 4.3).

Notice that the external domain knowledge of a domain object is not
static since, if during a refinement a domain object injects in its own core
process a fragment containing abstract activities, it receives also the do-
main properties on which the fragment execution relies on, thus spanning
its external knowledge. This dynamicity is reflected in the soft dependen-
cies between domain objects because new dependencies might be estab-
lished due to refinements, as we will better see in chapter 5. This is due
to the fact that the system dynamically evolves at run-time either for the
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entrance/exit of a domain object (change in the soft-dependencies), for a
change in the fragments it provides (again, potential change in the soft-
dependencies), or as a result of an abstract activity refinement (change in
the concrete dependencies and, in case of a refinement in a fragment, also
in the soft dependencies of the system).

Having introduced all the ingredients of the design for adaptation mod-
els, in the next section we provide their formalization.

4.2 Models Formalization

In this section, we give formal definitions of the core elements of our ap-
proach, informally introduced in the previous section. Firstly we define the
domain model in section 4.2.1 and then we formalize the domain objects
model elements in section 4.2.2. We refer, instead, to chapter 5 for the
execution model formalization of systems designed by using our approach.

4.2.1 Domain Model

In this section we formalize the domain model through the definition of
the domain property concept as its founding element.

Definition 1 (Domain Property). A domain property is a state transition
system dp = 〈L, l0, E, T 〉, where: L is a set of states and l0 ∈ L is the
initial state; E is a set of events; and T ⊆ L × E × L is a transition
relation.

We denote with L(dp), E(dp), T (dp) the corresponding elements of dp.

We have previously shown examples of domain properties in Figure 7.15
where, for each domain property, the initial state is denoted by the name
INIT, transitions are represented as arrows among states, and events are
given by the labels annotating the transitions.

Definition 2 (Domain model). A domain model is a set of domain proper-
ties C = {dp1, dp2, . . . , dpn} with dpi = 〈Li, l0i , Ei, Ti〉 for every 1 ≤ i ≤ n,
and such that for every pair 1 ≤ i, j ≤ n, if i 6= j, then Ei ∩ Ej = ∅.
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The set of all domain states is defined as LC =
n∏
i=1

Li and the initial

context state is l0C = (l01, l
0
2, . . . , l

0
n). The set of all domain events is EC =

n⋃
i=1

Ei. Finally, the transition relation in the domain model is given as TC

such that for every pair of states (l1, . . . , ln) ∈ LC and (l′1, . . . , l
′
n) ∈ LC,

and for every event e ∈ EC, if e ∈ Ei then ((l1, . . . , ln), e, (l
′
1, . . . , l

′
n)) ∈ TC

iff

(li, e, l
′
i) ∈ Ti, and for every j 6= i we have lj = l′j.

A domain model consists in a set of domain properties. We assume
that two distinct domain properties pi, pj ∈ C in a domain model do not
intersect. The states of a domain model is the product of its domain
properties. A state in a domain model can then be seen as the conjunction
of states of domain properties. The events of a domain model is the union
of the events of its domain properties. Transitions in a domain model are
component-wise: each transition changes the state of at most one domain
property.

Given a domain model C = {dp1, dp2, . . . , dpn}, it will be convenient
to denote with li = l̄ ↓dpi the projection of state l̄ ∈ LC onto the domain
property dpi.

4.2.2 Domain Objects Model

In this section we start by introducing all the elements that form a domain
object, then we show how domain objects combine to form an adaptive
system.

The domain models defined previously are instrumental in the defini-
tions of internal and external knowledge of domain objects. We proceed
with their definitions.

A domain object will have an internal domain knowledge.

Definition 3 (Internal Domain Knowledge). An internal domain knowl-
edge is a domain model DKI = {dpI} where dpI is a domain property that
represents the domain concept implemented by the domain object.
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For instance, let us consider the FLIXBUS domain object in Figure 4.3.
Its internal domain knowledge is given by the singleton containing the BUS

JOURNEY domain property.
A domain object will also have an external domain knowledge.

Definition 4 (External Domain Knowledge). An external domain knowl-
edge is a domain model DKE = {dp1, . . . , dpn}, where each dpi, 1 ≤ i ≤ n,
are domain properties that the domain object uses for its operation but that
are not under its own control.

For instance, in the FLIXBUS domain object in Figure 4.3, its external
domain knowledge is given by the singleton containing the PAYMENT MANAGEMENT

domain property, since the Flixbus service requires for the online booking
and payment of the tickets, but it does not implements the payment service.
Notice that in general, the external knowledge can contain more than one
domain property.

The external domain knowledge and the internal domain knowledge are
domain models. Hence, they have a set of states, and set of events, and a
transition relation as specified in Definition 2. For convenience, we denote
LE and EE the set of states and the set of events in the external domain
knowledge. We also denote LI and EI the set of states and the set of events
in the internal domain knowledge.

Both the internal behavior of a domain object, as well as the fragments it
provides to others, are modeled as processes. A process is a state transition
system, where each transition corresponds to a process activity. In par-
ticular, we distinguish four kind of activities: input and output activities
model communications among domain objects; concrete activities model
internal operations; and abstract activities correspond to abstract tasks to
be refined at run-time. All activities can be annotated with preconditions
and effects, while abstract activities are annotated also with goals. For
instance, let consider the example of fragment shown in Figure 4.5: in-
put/output activities are represented with an entering/outgoing message;
abstract activities are drawn with a dotted line, while concrete activities
are defined by solid lines. We define a process as follows:

Definition 5 (Process). A process defined over and internal domain knowl-
edge DKI and external domain knowledge DKE is a tuple p = 〈S, S0, A, T,
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Ann〉, where:

• S is a set of states and S0 ⊆ S is a set of initial states;

• A = Ain ∪ Aout ∪ Acon ∪ Aabs is a set of activities, where Ain is a set
of input activities, Aout is a set of output activities, Acon is a set of
concrete activities, and Aabs is a set of abstract activities. Ain, Aout,
Acon, and Aabs are disjoint sets;

• T ⊆ S × A× S is a transition relation;

• Ann = 〈Pre,Eff,Goal〉 is a process annotation, where Pre : A →
2LI ∪ 2LE is the precondition labeling function, Eff : A→ 2EI ∪ 2EE is
the effect labeling function, and Goal : Aabs → 2LE is the goal labeling
function.

We denote with S(p), A(p), and so on, the corresponding elements of p.
We say that the precondition of the activity a is satisfied in the domain

knowledge state l̄ ∈ LI ∪ LE, and denote it with l̄ |= Pre(a), if l̄ ∈ Pre(a).
Similarly, we say that the goal of the activity a is satisfied in l̄ ∈ LI ∪ LE,
and denote it with l̄ |= Goal(a), if l̄ ∈ Goal(a). Notice that the goal
of an abstract activity specifies a subset of states in the external domain
knowledge. As mentioned earlier, a goal can thus effectively be seen as
a “disjunction of conjunctions” of states of domain properties. We say
that the effects of activity a are applicable in the domain knowledge state
l̄ ∈ LI ∪ LE, if for each event e ∈ Eff(a) there exists a dpi ∈ DK and
l′i ∈ L(dpi) such that (l̄ ↓dpi, e, l′i) ∈ T (dpi).

In particular, in our approach, processes are modeled as Adaptable Per-
vasive Flows (APF) that is an extension of traditional work-flow languages
making processes suitable for adaptation and execution in dynamic en-
vironments. The language used to shape processes is the APF language
[123], whose syntax corresponds to that defined in Definition 5, while its
semantic has been characterized in [123].

Definition 6 (Domain Object). A domain object is a tuple o = 〈DKI ,DKE,
p,F〉, where:

• DKI is an internal domain knowledge,

• DKE is an external domain knowledge,
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• p is a process, called core process, defined on DKI and DKE,

• F = {f1, . . . , fn} is a set of processes, called fragments, defined on
DKI and DKE, where for each fi ∈ F , a ∈ Ain(fi) implies a ∈ Aout(p)
and a ∈ Aout(fi) implies a ∈ Ain(p).

The latter constraint on fragments specification concerns the fact that
input/output activities in fragments represent explicit communication with
the provider domain object. Thus fragments, once received by other do-
main objects and injected in their own process, start a peer-to-peer com-
munication with the core process of the provider, that implements the
required functionality. A graphical representation of a domain object is
reported in Figure 4.2.

Definition 7 (Adaptive System). An adaptive system is modeled as a set
of domain objects: AS = {o1, . . . , on}.

Figure 4.3, for instance, shows a portion of the travel assistant adaptive
system. In it, we say that there is a soft dependency between objects o1 and
o2, denoted with o1 L99 o2, if o1 requires a functionality that is provided
by o2. A soft dependency is formally defined as follows:

Definition 8 (Soft Domain Objects’ Dependency). ∀oi, oj ∈ AS with oi 6=
oj , oi L99 oj if there exists dpE ∈ DKE(oi) then there exists dpI ∈ DKI(oj)
such that dpE = dpI.

In Figure 4.3, soft dependencies are made by dotted arrows among do-
main objects.

4.3 Discussion

In this chapter we have seen at a lower level of detail the two fundamental
models of the design for adaptation approach, namely the domain model
and the domain objects model. Their aim is that of enabling the adaptation
of service-based systems from their design phase and support it during the
run-time execution of these systems. In particular, they accomplish this
task by using a specific approach exploiting specific constructs. Firstly,
the approach explicitly handle the domain by managing the dynamicity of
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services, which can enter or leave the system at any moment. This is due
to the use of the domain model that provides an abstract representation of
the domain concepts, which can be concretized by different services, each
giving their own implementation of a specific concept. For instance, coming
back to the travel assistant example and considering the domain concept
RIDE SHARING in Figure 7.15, it is easy to notice that different ride sharing
mobility services can adhere to this concept and give their own procedure
to implement it (as done by the BlaBlaCar service in Figure 4.3). If a
new ride sharing services join the system, it must just implement the RIDE

SHARING concept in the domain model, without the need of changing it.
Furthermore, thanks to annotations defined on top of the domain model
and used also to define goals, if a goal predicates over the RIDE SHARING

property (e.g., Goal: RIDE SHARING = Rideshare Executed), the entrance of a
new service implementing it does not forces a change in the goal. To the
contrary, during the execution of the system, if it is necessary to define
a service (i.e., fragment) composition to satisfy the specific requirement,
the new service can immediately be considered for the composition (e.g.,
a ride-share journey might be now accomplished by considering not only
BlaBlaCar but also the new available ride-sharing service).

Going on, we have seen as the domain objects model allows for the
uniform modeling of services as domain objects, which are linked to the
domain model through annotations and whose execution let the domain
evolve. Also this model supports the adaptation, since it allows the design
of an ecosystem of customizable services that can be easily personalized
in different domains. This is made possible thanks to the use of abstract
activities representing opening points in the definition of processes and
fragments, which allow the services to be refined when the domain is known
or discovered, and according to its continuous evolution. To support the
dynamic inter-operability among services, a flexible connection strategy
between domain objects is provided and it is based of soft dependencies (see
Def. 8) established at design time among domain objects’ offered/required
functionalities.

At this point of the discussion, we highlight a couple of aspects that are
not managed in the current version of our approach, but that leaves open
points for future extensions, as we will better discuss in chapter 8. The first
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refers to composition requirements, which are expressed in terms of goals
on abstract activities defined as disjunctions of conjuctions over states of
domain properties. In particular, they reflects functional properties of ser-
vices allowing the definition of control-flow composition requirements. On
the other hand, data-flow requirements are not actually considered. Al-
though previous work on data-flow requirements in the composition of Web
services exist (see for instance [124] and [125]), they have not yet been in-
tegrated into the design for adaptation approach. Besides their integration
as future work, we also plan to consider an extension of the domain prop-
erties in such a way to consider data variables related to context states.
The idea is that of enabling the definition of annotations that consider not
only the current context states in the domain configuration but also the
values of their data variables.

The second aspect, instead, refers to the handling of unexpected events
coming from the context and affecting the execution of service-based ap-
plications. As we said, indeed, domain properties may evolve both as an
effect of the normal execution of service-based applications and because of
exogenous events in the operational context. These events are modeled as
transitions in the STS shaping domain properties. While the events repre-
senting the normal evolution of a domain property are devised by domain
experts during the design phase and they are triggered by the execution
of activities in processes and fragments, the events modeling unexpected
changes in the context are triggered by the operational context and they
do not relate to the execution of service processes. In the current version
of our approach, we do not deal with the monitoring of context events,
while the approach is able to manage the system’s adaptation in case they
occur. This limitation can be overcome by extending our approach with
existing approaches dealing with the monitoring of the evolving contexts
in which service-based applications are executed. For instance, relevant
approaches can be found in [107]. A comparison among different run-time
monitoring approaches, in various domains and for different purposes, is
further provided in [126].

In the next chapter we introduce the adaptation mechanisms and strate-
gies exploited and facilitated by our design for adaptation approach. We
define the enablers for the execution and adaptation of service-based sys-
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tems (e.g., process engine, adaptation engine, domain objects manager)
together with additional features of the approach enabling a high level of
dynamicity of service-based systems defined within our framework.
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Chapter 5

Adaptive Service-Based Systems:
Execution

This chapter is devoted to the dynamic and automatic adaptation of service-
based systems defined within our framework. In chapter 4, we have de-
scribed how our design for adaptation approach supports the modeling of
service-based systems, by introducing adaptation artifacts already in the
system models. In particular, we have seen how the modeling approach
based on domain objects allows the definition of service functionalities (i.e.,
fragments) as abstract procedures saying what might be done, but without
specifying how to do it, thus leaving the context-aware specification of
these procedures to the run-time execution of the system. This is done
especially by exploiting the abstract activity construct and the possibility
to link the execution of these functionalities to an abstract description of
the operational environment of the system, namely the domain model, on
top of which rich service composition requirements labeling functionalities
can be defined.

From the execution perspective, it is known that the adaptation may
take place at different levels of abstraction of service-oriented architecture.
Commonly, these levels are (i) the infrastructure level (ii) the service level
and (iii) the application level. In our approach, the adaptation of service-
based systems concerns with the application level, the most abstract one,
which commonly deals with services realized as service-based processes.
Indeed, as described in chapter 4, domain objects’ core processes and frag-
ments are both modeled as processes.
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As previously introduced, the execution of service-based systems de-
fined within our design for adaptation framework relies on previous work
on the dynamic adaptation of fragment-based and context-aware business
processes [25, 120] based on AI planning [47]. In particular, this work per-
forms a goal-based adaptation that is notably suitable for the application in
open and dynamic environments, differently from rules-based and built-in
approaches. Indeed, the application of approaches belonging to these last
two categories requires to specify adaptation tactics at design-time, which
is inappropriate to deal with dynamic service-based systems.

This chapter is an extended and revised version of the work presented
in [28]. In order to comprehensively define the adaptation mechanisms and
strategies exploited by our approach, we provide an overview of the work
on the dynamic adaptation of fragment-based and context-aware business
processes [25, 120] in section 5.1. In section 5.2, instead, we give a descrip-
tion of the enablers of the design for adaptation framework supporting the
execution and the adaptation of service-based systems. For illustration
purpose and to ease the explanation, we provided a running scenario of
the travel assistant example in section 5.3, which also helps us to present
additional features of the approach related to the adaptation of systems
(e.g., the dynamic knowledge extension). Eventually, the execution model
is formalized in section 5.4, and discussed in section 5.5.

5.1 Background on Adaptation Mechanisms

and Strategies

Before showing a running example of the domain objects-based travel as-
sistant, we give, in this section, a background of the exploited adaptation
mechanisms and strategies. These implement the dynamic adaptation of
fragment-based and context-aware business processes proposed in [25, 120],
which are in turn based on AI planning [47]. The link between the approach
presented in this dissertation and the approaches in [25, 120] is the use of
the APFL language [123] to model business processes (i.e., the equivalent
of core processes in this dissertation) and fragments. As already seen in
chapter 4, APFL gives the possibility to relate the execution of processes
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with the system context, through the use of annotations on process ac-
tivities (e.g., preconditions and effects). Moreover, APFL adds the use of
abstract activities labeled with goals and acting as open points enabling
the customization and adaptation of processes, as we are going to see in
this chapter. These aspects allow developers to define flexible processes
that are particularly suitable for adaptation and execution in dynamic en-
vironments. In [25, 120] the authors provides mechanisms and strategies
for the dynamic adaptation of APFL-based processes. In this section, we
briefly describe these mechanisms and strategies, as well as the automated
service composition approach based on AI planning that they exploit [47].
An exhaustive example of their description and application in a car logistic
scenario can be found in [127].

The adaptation mechanisms that can be used to handle the dynamicity
of the environment in which service-based systems operate essentially deal
with three types of adaptation needs:

1. The first one refers to the need for refining an abstract activity when
executing a process. This is made by triggering the refinement
mechanism whose execution allows the framework to automatically
find and compose available fragments in the system, on the basis of the
goal of the abstract activity and the current context. As a result, an
executable process whose execution guarantees to reach the abstract
activity’s goal is provided. The refinement mechanism performed at
run-time is particularly advantageous since it allows to postpone the
selection of fragments to the run-time phase, when the system knows
about their availability (e.g., in the mobility domain, the effective
availability of mobility services in a specific time and place can be
known only at run-time). Furthermore, the fragments composition
depends on the current execution context, which is unknown at de-
sign time (e.g., a ride-share journey may be complete with passengers
and thus it is not usable).

Example. As we will see later on in this chapter, an example of ab-
stract activity could refer to the booking of a travel alternative chosen
by the user. During the execution the abstract activity is automatically
refined by (a composition of) the fragments implementing the booking
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functionality, if any, and provided by the mobility services belonging
to the specific travel alternative.

2. The second mechanism refers to the violation of the precondition of an
activity that has to be performed. In this case the local adaptation
mechanism is performed. Its aim is that of bringing the system to
a context configuration where the execution can be resumed. This
requires for a solution helping in re-starting a faulted process. Also in
this case the framework generates a composition of fragments whose
execution brings the system to a context configuration in which the
activity precondition is satisfied.

Example. To give an example in the mobility domain, suppose that
the fragment for booking a place in a ride-share starts with an activity
whose precondition requires that the user is registered to the specific
ride-sharing service. If this precondition is not satisfied when the ac-
tivity must be performed, the framework could provide a composition
made by the fragments allowing the user to register for the selected
ride-sharing service, in such a way to restart the faulted process and
continue with the booking procedure.

3. Lastly, the framework allows the specification of activity’s compensa-
tion as goal over the context, in such a way to avoiding the explicit
definition of the activities to be executed and to dynamically provide a
context-aware compensation process. This process is simply a compo-
sition of fragments selected by taking into account the current context
and whose execution fulfills the compensation goal. In this case, the
compensation mechanism is applied.

Example. A typical example in the mobility domain refers to a sit-
uation in which a travel ticket refund is needed. The compensation
goal associated to the activity must require that a context configura-
tion where the ticket is not booked for the specific travel. In this case,
the activity needs to be compensated after its completion and the gen-
erated compensation process requires that the ticket for the travel is
refund.
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At this point of the discussion about the exploited adaptation mecha-
nisms, is important to highlight that the AI planning which the goal-based
adaptation relies on is able to deal with stateful and non-deterministic
services. The framework, indeed, intuitively allows for the representation
of relevant concepts (i.e., the domain, activities preconditions and effects)
that give the possibility to relate the execution of processes (i.e., services)
with the application context. Moreover, as demonstrated in [47], the frag-
ment composition (i.e., a plan) returned by the AI planner as a result
to an adaptation problem is correct by construction, that is, if a plan is
found, it is guaranteed that its execution allows to reach a situation in
which the goal of the adaptation problem is reached. However, dealing
with stateful services implies that the planner may also not find a solution
to an adaptation problem. For these reasons, adaptation strategies have
been designed. Indeed, the mechanisms introduced above can further be
combined together by realizing adaptation strategies allowing the system
to handle more complex adaptation needs (e.g., the failure of an abstract
activity refinement). In particular, we mention the following:

• Re-refinement strategy: it combines the compensation and the
refinement mechanisms. It handles the situation in which a faulted
activity belongs to the refinement of an abstract activity. In this
case, this strategy first compensate the activities that have already
been executed and that are annotated with a compensation goal, and
then it performs a new refinement of the starting abstract activity, by
considering now the new context configuration.

• Backward adaptation strategy: it combines the compensation and
local mechanisms. It handles the situation in which, given a new con-
text configuration, it is needed to bring back a process instance to a
previous activity in the process that may allow for different execution
decisions. The compensation is used to roll-back (some of) the activ-
ities, while the local adaptation is required for bringing the system to
a new configuration satisfying the activity precondition.

At this point, to conclude this overview on the context-aware adapta-
tion of processes, we briefly describe the fragments composition approach
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based on AI planning [47]. Essentially, for the automatic resolution of an
adaptation problem, according to [47], this is transformed into a planning
problem, so that planning techniques can be used to solve it.

In Figure 5.1 we give a graphical overview of the approach, as a simpli-
fied version of that shown in [47]. Further details can be also found in [25].
The adaptation problem is represented by a set of fragments (e.g., PFi), a

Figure 5.1: Adaptation as AI Planning.

set of domain properties (e.g., DMi) and an adaptation goal. The plan-
ning domain is then derived from the adaptation problem by transforming
fragments and domain properties into STS, by applying transformation
rules, such as those presented in [120]. The adaptation goal is, instead,
transformed into a set of configuration of the planning domain. At this
point, given the specified planning domain, the planner generates a plan
that achieves the adaptation goal. The generated plan is itself an STS,
thus it is translated into an executable process that effectively implements
the adaptation mechanisms described above.

In conclusion, we remark that the before-mentioned mechanisms and
strategies have all been implemented in an adaptation engine [121]. This
engine is one of the enablers of our design for adaptation framework and
we exploit it in the way that we will show in the next section.
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5.2 Enablers of the Design for Adaptation

Framework

To understand the operation of the travel assistant, we first introduce the
execution and adaptation enablers provided by the design for adaptation
framework shown in Figure 5.2. Indeed, the run-time operation of service-
based applications defined on top of our platform relies on different enablers
supporting their execution and adaptation.

Figure 5.2: Platform Enablers.

The Execution Enablers, namely the Domain Objects Manager and
the Process Engine, leverage on the different services wrapped up as do-
main objects and stored in the system’s knowledge base. The execution
enablers are in charge of execution the domain objects processes (i.e., core
processes and fragments) during the operation of service-based applica-
tions. The Adaptation Enablers, namely the Refinement Handler, the
Adaptation Manager and the AI planner, instead, leverage on the adap-
tation mechanisms and strategies, described in section 5.1. They are in
charge of managing the adaptation needs of applications, arising at run-
time. Considered as a whole, they represent the adaptation engine.

To start, it is required that developers exploit and wrap up as domain
objects the available services in a given domain (e.g., mobility). These are
stored in the Domain Objects Models repository in Figure 5.2. To under-
stand how the execution and adaptation enablers interact and cooperate,
we defined a sequence diagram showing the interaction-flow among them
in Figure 5.3.

Domain objects core processes (simply processes from here on) imple-
ment the behavior of the services modeled as domain objects. They are ex-
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Process Engine AI PlannerAdaptation ManagerRefinement HandlerDomain Objects Manager

14:Execute refinement 
process

10:Plan translation

6:Build AI planning 
 problem

2:Deploy process

1:Instantiate domain object

13:Deploy process(es)

12:Instantiate domain object(s)

5:Submit adaptation 
problem

                   11:Inject executable adapted process

8:Plan 
generation

7:Planning request

3:Refine abstract activity

4:Define Adaptation 
problem

9:Send plan

Figure 5.3: Interaction-flow among the execution and adaptation platform enablers.

ecuted by the Process Engine. This component is central in our approach:
it handles the decentralized management of processes, the communication
among processes, the dynamic correlation among processes and the abstract
activity management, which are needed requirements for the application of
our techniques. It manages service requests among processes and, when
needed, it sends requests for domain objects instantiation to the Domain
Objects Manager. A request is sent for each demanded service whose cor-
responding process has not yet been instantiated. The domain objects
manager replies by deploying the requested process on the process engine.
In this way, a correlation between the two processes is defined.

During the normal execution of processes, abstract activities can be
met. These activities need to be refined with one or a composition of frag-
ments modeling services functionalities. To this aim, the process engine
sends a request for abstract activity refinement to the Refinement Han-
dler component. This component is in charge of defining the adaptation
problem corresponding to the received request. Indeed, in our framework
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an adaptation need corresponds to the need of refining an abstract activ-
ity. An adaptation need is then transformed into a general adaptation
problem that contains complete information about the adaptive system in-
stance and an adaptation goal, which captures the adaptation objectives
to be fulfilled. The refinement handler implements a pre-planning phase,
by defining the problem domain. To this aim, it selects the fragments that
can potentially be part of the final fragments composition. The selection
is driven by the goal defined by the abstract activity. Then, the refinement
handler submits the adaptation problem to the Adaptation Manager. This
translates the adaptation problem into a planning problem so that it can
be solved by the AI Planner component. After the plan generation, the
AI planner sends the plan to the adaptation manager that will transform
it into an executable process. This process can now be sent to the process
engine and injected into the abstract activity being refined. At this point,
depending on the fragments in the composition, the process engine can re-
quest for the instantiation of one or more domain objects, whose processes
will be deployed. At the end, the execution of the refinement process can
be performed.

We want to highlight, now, that while the adaptation engine implements
all the adaptation mechanisms and strategies reported in section 5.1, in our
design for adaptation framework we only handle the refinement mechanism.
As future work we plan to extend the framework to the management of all
the other mechanisms. This is due to the fact that, differently from the
adaptation engine, we implemented from scratch both the process engine
and the domain objects manager, and we adjusted them for the joint use
with the adaptation engine, thus enabling the communication and inter-
operation with it. This work required a huge implementation effort. Our
strategy has been that of focusing on the demonstration of the feasibility
of our approach, by implementing a prototype of travel assistant exploit-
ing real-world services as domain objects (see chapter 7), while leaving the
management of the other adaptation mechanisms for future work. Imple-
mentation details will be given in chapter 7.

In the next section we show a concrete example on the running execu-
tion of the travel assistant, allowing the readers to better understand the
operation of the platform’s enablers.
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5.3 Travel Assistant: Running Scenario

In this section, we first detail the functioning of the travel assistant and,
then, we give an execution example. We have previously shown a (partial)
overview of the travel assistant system’s model in Figure 4.3 of chapter 4.
In particular, the figure shows the hierarchical model of the system made
by a set of domain objects connected through soft dependencies among
their offered and required functionalities. The focus of this section is,
furthermore, that of showing:

• how the domain objects dynamically inter-operate by exchanging and
injecting (composition of) fragments, thus enabling a chain of incre-
mental refinements (such as that in Figure 5.4). This is due to the use
of abstract activities in core processes and fragments and to the ex-
ploitation of the refinement mechanism. Moreover, when two domain
objects effectively interact, the soft dependency between them evolves
into a strong dependency. In other words, their potential dependency
emerged at design time really turns into a concrete dependency at
run-time;

• how the refinement process allows domain objects to span their exter-
nal knowledge on the domain, by establishing new soft dependency.
Indeed, we recall here that the external domain knowledge of a do-
main object is not static since, if during a refinement a domain object
injects in its own core process a fragment containing abstract activ-
ities, it receives also the domain properties on which the fragment
execution relies on (see section 5.3.1).

Let us now consider the operation of the travel assistant system repre-
sented by the Travel Assistant domain object in Figure 4.3. Its main features
are the following: (i) by interacting with the user, it collects her journey
requirements (e.g., source and destination points, travel preferences, etc)
and it sets up the corresponding journey planning request; (ii) given a user
journey planning request, it is able to decide between a local or a global
planning service to better handle the request, by analyzing the source and
destination points entered by the user; (iii) given the planner responses,
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it defines the better way to show this responses to the user (e.g., a list of
travel alternatives, a warning message); (iv) once the user selects a spe-
cific solution, the travel assistant is able to identify the transport means
in the legs making the entire solution. With the information that it gets,
it goes vertically to find the proper service(s) to use (e.g., the ones of the
specific transport companies), if existing in the system. In this way, it can
incrementally provide to the user specific functionalities and context-aware
information for her journey. We emphasize that the more (mobility) ser-
vices are wrapped up and stored in the system’s knowledge base, the more
responsive and accurate the travel assistant will be.

Executing the travel assistant. In this paragraph, we show the execu-
tion of the scenario described above. It represents the situation in which
our user, let’s say she is called Sara, wants to organize a journey from
Trento to Vienna. In Figures 5.4, we report examples of chains of incre-
mental refinements, as they are dynamically set up and executed after the
specific request of Sara.

We remark that more complex and close to reality alternatives of our
scenario can be modeled within our framework. However, even this simple
version allows us to highlight the features of the design for adaptation ap-
proach and the issues that it tries to address. For presentation purposes
and without loss of generality, we report only portions of the processes
and fragments involved in the specific scenario. For each fragment, we
specify its name and the domain object which it belongs to (e.g., frag-
mentName@domainObjectName).

We suppose that the travel assistant is provided as a mobile application
(modeled by the domain object Travel Assistant Application in Figure 4.3),
through which Sara is using it. The execution starts from the core process
of this mobile app, modeling the user process. Sara starts the process, by
starting the application. Then, a sequence of three abstract activities (rep-
resented with dotted lines and labeled with a goal) need to be refined. Here
we focus on the first one, Plan Journey, whose goal models the situation in
which Sara ends up with a specific travel plan. To execute this activity, the
refinement mechanism is triggered. In the following we list the refinement
steps happening while executing the travel assistant and shown in Figure
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5.4.

STEP 1: PLAN FOR G1

STEP 2: PLAN FOR G4

STEP 3: PLAN FOR G8

STEP 4: PLAN FOR G5

STEP 6: PLAN FOR G

STEP 5: PLAN FOR G6

LEGEND

G1: TA = Journey Planned E6: PM.identifyPlanningMode

G2: TA = Plan Booked G7: LP = Local Journey Planned

G3: TA = Journey Execution G8: GP = Global Journey Planned

P1: TA = Init P3: DV = Init

E1: TA.insertData E7: DV.sendPattern

G4: PM = Planning Mode Defined P4: JM = Init

E2: TA.planJourney E8: JM.handleLegs

G5: DV = Pattern Defined G: TJ = Response Sent AND BJ =   
Response Sent

E3: TA.sendAlternatives P5: GP = Init

E4: TA.userSelection E9: GP.sendPlan

G6: JM = Leg Defined P6: TJ = Init

E5: TA.refinePlan E10: TJ.sendResponse

P2: PM = Init P7: BJ = Init

E11: BJ.sendResponse

Figure 5.4: A detailed example of the travel assistant execution through incremental and
dynamic refinements.

Step 1. The fragment PlanJourney provided by the Travel Assistant is se-
lected for the refinement, and injected in the behavior of the mobile app
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core process. It implements a wider journey planning functionality, that is
from a first planning looking for available alternatives, to a more detailed
planning after that a specific alternative has been found and selected by
the user. To start, it allows Sara to insert the departure and destination
locations.

Step 2. To identify the proper planning mode (local vs. global), and thus
find the better journey planner, the travel assistant domain object relies
on the Planners Management domain property, as shown by the abstract ac-
tivity Travel Assistant Plan Journey in the PlanJourney fragment in execution.
The Journey Planners Manager domain object implements the Planners

Management domain property. Its fragment SelectPlanningMode is selected for
the refinement. This fragment does not implement any logic, but it needs
to communicate with its core process. Indeed, its activities Plan Request and
Receive Planning Type model the communication with its core process, where
the request is effectively handled. In particular, the Journey Planners Man-
ager knows only at runtime if a local or global planning is required. In our
scenario, since the locations entered by Sara are Trento and Vienna, the
Journey Planners Manager will reply with a global planning type. This will
drive the execution of its fragment through the Plan Global Journey abstract
activity.

Step 3. At this point, one or more fragments provided by the available
global journey planners existing as domain objects in the system’s knowl-
edge base can be selected for the refinement. In our scenario, we suppose
that the Plan Global Journey abstract activity is refined with the fragment
Plan provided by the Rome2Rio domain object, a open global planner ser-
vice. The execution of this fragment will end up with a list of travel
alternatives, if any.

Step 4. After that the chain of incremental refinements made by the steps
1, 2 and 3 has been accomplished, the execution returns to the PlanJourney

fragment, by continuing with the DataViewerPattern abstract activity. Indeed,
to properly show the travel alternatives to the user, an appropriate data vi-
sualization pattern must be selected, based on the data format (e.g., a list,
a message). This is defined at run-time, when the data (and its format) is
known. The Data Viewer domain object provides the DefineDataViewerPattern
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fragment for this purpose. At this point, Sara can receive and visualize on
her smartphone the list of the found travel alternatives satisfying her re-
quirements.

Step 5. Sara can now select her preferred alternative (we suppose that she
selects a multi-modal solution made by a train and a bus travels). Based on
the user choice, the Define Journey Legs abstract activity is refined with the
HandleJourneyLegs fragment provided by the Journey Manager domain ob-
ject. It is able to dynamically define the goal for the Refine Journey abstract
activity, that will be G: TJ = Response Sent AND BJ = Response Sent, being the
selected solutions made by a train and a bus journeys. The refinement of
this abstract activity will allows the Travel Assistant system to look for
and find the proper fragments for each journey leg. Notice that the Refine

Journey activity is a so-called higher order abstract activity, that we are
going to define in the subsequent paragraph.

Step 6. The last step shows a composition of fragments provided by the
transport companies involved in the legs of the user selection (i.e., Sudtirol
Alto Adige and Hello). Their execution provides to Sara the proper solu-
tions, from the two companies, that combined together satisfy her need of
planning a journey from Trento to Vienna, passing through Bozen.

Higher Order Abstract Activities. In the step 5 of the running exam-
ple, we have presented the Refine Journey activity as a Higher Order Abstract
Activity (HOAA). This kind of activity is actually a regular abstract ac-
tivity and is managed as such, with the only difference that its goal is
defined at execution time, within the fragment or core process it belongs
to. For instance, in Figure 5.4 – Step 5, we can notice that the receive
activity just preceding the Refine Journey HOAA, namely Receive Goal for

Legs Specialization, is in charge of receiving the HOAA’s goal and labeling
the HOAA with it, so that, at the next step, the process engine will meet
a regular abstract activity to execute.

HOAAs are used when the goal that needs to be specified is totally
depending from the run-time execution environment and the only way to
specify it, at design time, would be that of pre-defining all the alternatives
that is possible to predict. But this is exactly what must be avoided while
defining adaptive service-based applications to be executed in dynamic
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environments. For this reason, we implemented and introduced in our
framework the HOAA construct allowing the dynamic definition of goals
(i.e., composition requirements) when the execution domain is known.

Example. Let us consider the HandleJourneyLegs fragment at Step 5 in the
running example, containing the HOAA. It is exposed by the Journey Man-
ager domain object that is a value-added domain object defined by exploiting
and combining the domain objects implementing real-world mobility domain
concepts, such as train journey, bus journey, air journey, and so on. In-
deed, its main task is that of relate the specific travel alternative selected by
a user with the proper domain objects able to handle it. At this point, it is
easy to notice that a travel solution can be made from any combination of
transport means. This implies that the goal of the HOAA, if pre-defined,
should model any possible configuration to cover all the corresponding com-
bination of transport means. To the contrary, the Journey Manager do-
main object implements the logic to dynamically relate each combination
of transport means (e.g., train and bus as in our example) with the right
goal to be associated with the HOAA (e.g., the goal G: TJ = Response Sent AND

BJ = Response Sent in Figure 5.4) and generates it dynamically. Obviously,
the Journey Manager has a view on the system’s knowledge base and the
available domain objects models, on top of which it runs its logic.

5.3.1 Dynamic Knowledge Extension

An important feature of our approach that strongly supports the dy-
namicity of service-based applications is represented by the ability of
domain objects to span their knowledge on the whole application do-
main.

As detailed in chapter 4, each domain object has a partial view on the
operational environment of the application, which is represented by domain
properties in the domain model. In particular (see Figure 4.2), while the
internal domain knowledge in a domain object captures the behavior of the
domain concept implemented by the domain object, the external domain
knowledge is made by domain concepts that are required to accomplish its
behavior but for whose implementation it relies on other domain objects.

115



The dynamic extension of the knowledge concerns with the external do-
main knowledge and it is caused by the execution of the abstract activity
refinement mechanism. In particular, it happens every time that a domain
object injects in its own core process a fragment containing abstract activi-
ties. Indeed, since abstract activities are labeled with a goal that predicates
on the domain properties in the external knowledge of the domain object
which it belongs to, the receiving domain object receives, together with
the fragment, also the domain properties on which the fragment execution
relies on. These domain properties are going to be part of the external
domain knowledge, thus extending it.

We illustrate this feature with a practical example, reported in Figure
5.5. The example is focused on a specific subset of the refinement steps
in Figure 5.4. While in 5.4, for a matter of readability of the scenario
execution, we show only the fragments involved in each refinement step,
in Figure 5.5 we show also (some of) the entire domain objects with their
structure, so that we can demonstrate how they evolve, by extending their
knowledge. More precisely, the example focuses on what happen to the
adaptive travel assistant application instance when the refinement steps 2
and 3 (see Figure 5.4) are performed.

We catch the moment in which Sara is executing the refinement for the
goal G1 in the core process of the Travel Assistant Application domain
object. She has just entered the departure and destination points, when
the process engine meets the Travel Assistant Plan Journey abstract activ-
ity, whose goal G4: PM = Planning Mode Defined is defined over the Planners

Management domain property in the external knowledge. At this point, the
refinement mechanism is triggered and the Step 2 in Figure 5.5 starts. The
adaptation engine replies with the fragment Select Planning Mode, which is
provided by the Journey Planners Manager domain object, that can thus
be injected in place of the abstract activity. Two important things happen
right now:

• the dependency between the Travel Assistant Application and the
Journey Planners Manager, which was a design time soft dependency,
becomes a strong dependency (represented as a solid arrow) because
of the effective inter-operation between the two domain objects due
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Figure 5.5: Example of the dynamic extension of a domain object’s knowledge.

to the exchange of the Select Planning Mode fragment;

• since the Select Planning Mode fragment is equipped with two abstract
activities, namely Plan Local Journey and Plan Global Journey, labeled
with the goals G7 and G8 (see table in Figure 5.4) respectively, the
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Travel Assistant Application receives also the Local Planning and Global

Planning domain properties, on which these goals are defined. This di-
namicity is now reflected in the soft dependencies of the Travel Assis-
tant Application because new dependencies are established. In partic-
ular, it will establish new dependencies with all the domain objects in
the system implementing the two just hinerited domain properties. In-
deed, by looking at Figure 5.5 and focusing only on the Global Planning

property, we can see that new soft dependencies exist between the
Travel Assistant Application and the global planners currently avail-
able, namely From A to B 1, Google Transit 2 and Rome2Rio.

We can notice how the dynamic knowledge extension allows domain
objects to dynamically discover new services that they can, in turn, exploit
for the refinement of hinerited abstract activities. Indeed, the step 3
in Figure 5.5 refers to the refinement of the Plan Global Journey activity,
for which the Plan fragment provided by the Rome2Rio domain object
is selected. It is easy to note that this refinement would not have been
possible without the dynamic extension of the knowledge because, in its
design time version, the Travel Assistant Application did not have the
Global Planning knowledge required to do it.

At last, we want to highlight that if new global planners enter the sys-
tem, the Travel Assistant Application will be able to know and exploit
them in its further execution, thanks to the establishment of new soft de-
pendencies due to the dynamic knowledge extension feature.

5.4 Execution Model Formalization

In this section, we formally define the execution model of an adaptive
service-based system defined within our framework. We start by char-
acterizing a deployed instantiation of an adaptive system having running
domain object instances. We will then present in details the execution
of a domain object, with a focus on the dynamic refinement of abstract
activities.

1 https://www.fromatob.com/ 2 http://www.google.com/transit

118



The following definition captures the current status of the execution
of a given core process. The process instance is a hierarchical structure,
obtained through the refinement of abstract activities into fragments. A
process instance is hence modeled as a list of tuples process-activity: the
first element in the list describes the fragment currently under execution
and the current activity; the other tuples describe the hierarchy of ancestor
fragments, each one with abstract activities currently under execution. The
last element in the list is the process model from which the running instance
has been created. A process instance is defined as follows:

Definition 9 (Process Instance). We define a process instance Ip of a
process p as a non-empty list of tuples Ip = (p1, a1), (p2, a2), . . . , (pn, an),
where:

• each pi is a process and pn = p;

• ai ∈ A(pi) are activities in the corresponding processes, with ai ∈
Aabs(pi) for i ≥ 2 (i.e., all activities that are refined are abstract).

An example of process instance is given by the process of the Travel As-
sistant Application domain object, shown in Figure 5.4, where we reported
an example of its execution.

A domain object instance, instead, is specified by its current domain
knowledge and the respective instance, and by its process instance, as
defined in the following.

Definition 10 (Domain Object Instance). A domain object instance δ of a
domain object o = 〈DKI ,DKE, p,F〉 is a tuple δ = 〈DKI ,DKE+, l̄I , l̄E+, Ip〉
where:

• DKE+ ⊇ DKE, is the current set of domain properties in the external
domain knowledge;

• l̄I ∈ LDKI
and l̄E+ ∈ LDKE+ are the current state of the domain prop-

erties in the internal and external domain knowledge;

• Ip is its process instance.

Notice that DKE+ = DKE when the domain object is instantiated.
Then, has highlighted in section 5.3.1, DKE+ might grow during the do-
main object execution since, together with fragments to be executed, the
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domain object instance receives new domain properties from provider do-
main objects, thus spanning its original domain knowledge. This mecha-
nism is formally defined later on in the formalization of abstract activity
refinement and fragment injection.

We define now an adaptive system instance.

Definition 11 (Adaptive System Instance). An adaptive system instance
ASI of an adaptive system AS = {o1, . . . , on} is a set of domain object
instances ASI = {δij} where each δij is an instance of domain object oi.

For instance, if we consider the running scenario depicted in Figure 5.4
of the travel assistant system as modeled in Figure 4.3 of chapter 4, we
can say that the adaptive system instance, for that specific execution,
is made by instances of the Travel Assistant Application, Travel Assistant,
Journey Planners Manager, Journey Manager, Data Viewer, Rome2Rio, Train and Bus

domain objects. In other words, the adaptive system is made by instances
of the domain objects that our user Sara actually interacted with.

We will now formally define the execution model of domain objects. We
start by presenting the refinement of an abstract activity, since it is the
core aspect of the proposed approach. In the following a refinement need
is formalized.

Definition 12 (Refinement need). A refinement need is a tuple η = 〈ASI , δ, a〉
where:

• ASI is an adaptive system instance;

• δ ∈ ASI is the domain object instance for which the refinement is
needed;

• a is the abstract activity of δ to be refined.

For instance, considering the process whose refinement is shown in Fig-
ure 5.4, the domain object instance for which the refinement is needed is
an instance of the Travel Assistant Application, while the abstract activity
to be refined is the Plan Journey activity.

A refinement is defined as follows.
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Definition 13 (Refinement). A refinement for a refinement need η =
〈ASI , δ, a〉, denoted with REF (η), is a tuple 〈pη,DKη, l̄η〉 where:

• pη is the process to be injected;

• DKη is the set of domain properties to be added to the external domain
knowledge;

• for each a ∈ Aabs(pη), Goal(a) ⊆ 2LDKη ;

• l̄η ∈ LDKη
is the current state of the domain properties.

The last two items of the previous definition require that, in case the re-
finement process contains abstract activities, the domain knowledge needed
for their refinement is part of the refinement solution. Indeed, this is how
the domain knowledge extension is performed.

We will now characterize a correct solution for a refinement need η. In-
tuitively, a refinement 〈p,DK, l̄〉 is a correct solution to a refinement need
η = 〈ASI , δ, a〉, if the execution of p brings the external domain knowledge
of object δ in a state that satisfies the goal of a. Notice that p, being a
composition of fragments provided by other domain objects, might contain
abstract activities that will be refined later on, when the refinement is ex-
ecuted. Our definition of correct refinement is based on the assumption
that abstract activities, once refined, will behave as declared in their spec-
ification (preconditions and effects on their activities). That is, we treat
them as all other activities in the process, assuming that their behavior is
correctly specified through their annotations in terms of preconditions and
effects.

In the following we give the definitions of action executability, action
impact, and abstract run of a process. These definitions are the basis for
the formal characterization of a correct refinement.

Definition 14 (Action Executability). An action a of a process p is exe-
cutable from domain knowledge state l̄ ∈ LDK, denoted with Executable(a, l̄),
if l̄ |= Pre(a) and the effects of action a are applicable in domain knowledge
state l̄.
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In other words, an action is executable from a given domain knowledge
state if, in that state, its precondition is verified and its effects can be
applied.

Definition 15 (Action Impact). The impact of action a belonging to some
process p when executed from domain knowledge state l̄ ∈ LDK, denoted
with Impact(a, l̄), is a domain configuration l̄′ ∈ LDK such that for every
dpi = 〈Li, l0i , Ei, Ti〉 ∈ DK, if exists an e ∈ Eff(a) such that (l̄ ↓dpi, e, l′i) ∈ Ti
then l̄′ ↓dpi= l′i, otherwise l̄′ ↓dpi= l̄ ↓dpi.

The action impact is given by the domain configuration in which the do-
main knowledge of the domain object that is executing the activity evolves.

Definition 16 (Abstract Process Run). Given a process p = 〈S, S0, A, T,Ann〉
and a domain knowledge state l̄ ∈ LDK, π = (s1, a1, s2, . . . , an−1, sn) is an
abstract run of p from l̄ if:

• s1 ∈ S0 and ∀i,∈ [1, n] : si ∈ S;

• ∀i ∈ [1, n1] : ai ∈ A and (si, ai, si+1) ∈ T ;

• there exists a domain knowledge evolution of DK, πDK = (l̄1, l̄2, . . . , l̄n)
such that:

– l̄1 = l̄;

– Impact(ai, l̄i) = l̄i+1 for all i ∈ [1, n− 1];

– Executable(ai, l̄i) for all i ∈ [1, n1].

A process run that terminates in a state with no outgoing transitions
(final state) is called a complete run. We denote with ΠABS(p, l̄) the set
of all possible complete abstract runs of process p from domain knowledge
state l̄ ∈ LDK .

We can now define a correct refinement.

Definition 17 (Correct Refinement). Given a refinement need η = 〈ASI , δ, a〉,
with δ = 〈DKI ,DKE+, l̄I , l̄E+, Ip〉, we say that a refinement 〈pη,DKη, l̄η〉 is a
correct solution for η, if for each complete abstract run π ∈ ΠABS(pη, l̄E+),
its associated domain knowledge evolution πDK = (l̄1, l̄2, . . . , l̄n) is such that
l̄n |= Goal(a).
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Intuitively, a refinement is a correct solution for a refinement need if all
its complete abstract runs satisfy the goal of the abstract activity to be
refined.

As regards the execution of an adaptive system instance, intuitively, it
evolves in three different ways. First, through the execution of activities in
domain object instances, which will be presented in detail in the following.
Second, through the interaction among domain object instances, which
happens according to the standard rules of peer-to-peer process commu-
nication. Third, through a change in the behavior, or entrance / exit, of
domain objects and domain object instances into the system.

In the following we formalize the execution model of a domain object,
considering also the injection of a refinement solution in the case in which
an abstract activity is executed.

Definition 18 (Action Execution in a domain object Instance). Given
a domain object instance δ = 〈DKI ,DKE+, l̄I , l̄E+, Ip〉, with δ ∈ ASI and
Ip = (p1, a1), (p2, a2), . . . , (pn, an), the execution of action a1, denoted with
exec(δ, ASI), evolves δ to 〈DKI ,DK′E+, l̄′I , l̄

′
E+, Ip〉, where:

• if a1 ∈ Ain(p1) ∪ Aout(p1) ∪ Acon(p1) then

– DK′E+ = DKE+;

– l̄′I = Impact(a, l̄I) and l̄′E+ = Impact(a, l̄E+);

– if next(p1, a1) 6= ∅ then I ′p = (p1, next(p1, a1)), (p2, a2), . . . , (pn, an),
otherwise I ′p = (p2, next(p2, a2)), . . . , (pn, an).

• if a1 ∈ Aabs(p1), given 〈pη,DKη, l̄η〉 = REF (η), with η = 〈ASI , δ〉,
then

– DK′E+ = DKE+ ∪ DKη;

– l̄′E+ ∈ LDK ′
E+

is such that for every dpi = 〈Li, l0i , Ei, Ti〉 ∈ DK′E+,

if dpi ∈ DKη then l̄′E+ ↓dpi= l̄η ↓dpi, otherwise l̄′E+ ↓dpi= l̄E+ ↓dpi;
– I ′p = (pη, a

0
η)(p1, a1), (p2, a2), . . . , (pn, an).

Eventually, we previously said as a soft dependency among two domain
objects becomes a strong dependency, denoted with δih ← δjk, if the do-
main object δih injects in its internal process a fragment provided by δjk.
This is formally defined as follows:
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Definition 19 (Strong Domain Objects’ Dependency). ∀δih, δjk ∈ ASI
with i 6= j and h 6= k, δih ← δjk if ∃(f, a) ∈ Ip(δih)|f ∈ F(oj).

In the next section, we show how the refinement problem previously
presented can be solved by applying the automated fragment composition
approach based on AI planning [25, 120].

5.4.1 Automated Refinement via AI Planning

Within the approach presented in [47] and summarized in section 5.1, we
said that a fragment composition problem is transformed into a planning
problem. Relevantly to our purposes, such techniques cover uncertainty, in
order to allow the composition of services whose dynamics is only partially
exposed, and is able to deal with complex goals and data flow [120].

In the following we briefly describe how a refinement need η = 〈ASI , δ, a〉,
with δ = 〈DKI ,DKE+, l̄I , l̄E+, Ip〉 is transformed into an AI planning prob-
lem. In other words, we say how the approach in [47] is adjusted and used
in our framework.

First of all, a set of n fragments, (f1, . . . , fn), is selected from the soft
dependencies of δ: for some δ′ ∈ ASI , with δ L99 δ′, fi ∈ F(δ′).

Advanced optimization techniques, as the one described in [128], can be
used to further reduce the set of fragments on the basis of the functionalities
they provide and of the preconditions satisfiability of their preconditions in
current domain knowledge state. Both fragments (f1, . . . , fn) and the set
of domain properties (dp1, . . . , dpm) ∈ DK+

E, on which the fragments are
annotated, are transformed into state transition systems (STS) using trans-
formation rules similar to those presented in [47]. During this encoding, all
goals on abstract activities in fragments are ignored, while preconditions
and effects are maintained. With this measure, the refinement plan will
be built under the assumption that abstract activities will behave accord-
ing to their annotation, independently from the way in which they will be
refined (see Definition 17).

The planning domain Σ is obtained as the product of the STSs Σf1

. . . Σfn and Σdp1 . . . Σdpm, where STSs of fragments and domain properties
are synchronized on preconditions and effects, Σ = Σf1‖ . . . ‖Σfn ‖ Σdp1‖
. . . ‖Σdpm. The initial state of the planning domain is derived from the
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initial state of all fragments and the current state of the domain properties
l̄E+, by interpreting it as states of the STSs defining the planning domain.
Similarly, the refinement goal Goal(a) is transformed into a planning goal
ρ by interpreting the states in DKE+ as states in the planning domain.

Finally, the approach of [120, 47] is applied to domain Σ and planning
goal ρ to generate a plan Ση that guarantees achieving goal ρ once “exe-
cuted” on system Σ. State transition system Ση can be further translated
into an executable process pη, which implements the identified solution.

5.5 Discussion

In this chapter, we described the adaptation mechanisms and strategies
exploited by our design for adaptation framework. In particular, these
realize the dynamic adaptation of fragment-based and context-aware pro-
cesses proposed in [25, 120] and based on AI planning [47]. Moreover, the
mechanisms that we use implement a goal-based approach. Indeed, also
our opinion is that goal-based approaches are more robust against typi-
cal changes in dynamically evolving environments, compared to rule-based
and built-in methodologies. As also emerged from the motivating example
of this dissertation, indeed, the dynamicity of the environment is not only
given by service availability or changes in performance values of services,
but it is especially due to the continuous emergence of new services, to
the evolution of both the domain and the context in which service-based
systems operate, to changes in the implementation of services, as well as
to changes in business policies that can affect their operation, etc.

In this context, goal-based approaches are more flexible and robust, and
they can benefit from the availability of automated service composition
techniques dealing with abstract composition requirements. For these rea-
sons, we selected the approach in [25, 120] for the execution and adaptation
of service-based applications realized within our framework, and we defined
a design for adaptation approach allowing to support and facilitate its ap-
plication.

In order to comprehensively understand how these mechanisms and
strategies have been embedded in our framework, we described the en-
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ablers of the design for adaptation framework, comprising the process en-
gine and the adaptation engine, and we detailed how they communicate
and inter-operate to perform, respectively, the execution and the adapta-
tion of systems.

In addition, through a running scenario we have shown how service-
based systems perform at run-time and we also highlighted important fea-
tures of our approach, making it further suitable in dynamic environments,
namely higher order abstract activities and the dynamic knowledge exten-
sion. The first feature allows for the run-time definition of goals labeling
abstract activities in processes and fragments, when they strongly depends
on the run-time execution context (e.g., by the user choice) in order to de-
fine them when specific data and required services are known. The second
feature, instead, refers to the possibility for services, modeled as domain
objects, to dynamically span their view on the operational environment,
while executing. This happens thanks to the application of the abstract
activities refinement mechanism that enables a higher level of dynamicity,
allowing domain objects to dynamically discover other available domain
objects providing their required functionalities on the need.

A current limitation of the presented approach, as discussed in this
chapter, is that while the adaptation engine currently implements all the
adaptation mechanisms and strategies reported in section 5.1, in our design
for adaptation framework, at the moment, we only handle the refinement
mechanism. We plan, as future work, to extend the framework to the
management of all the other mechanisms. However, we specify that this will
ask more for an implementation effort that for an extension of the domain
objects model, which already includes all the required constructs to handle
the local and compensation adaptation mechanisms (e.g., preconditions,
effects, goals).

The following chapter is devoted to an extension of the design for adap-
tation approach presented in this dissertation, to make it suitable for the
modeling and execution of Collective Adaptive Systems (CAS).
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Chapter 6

Domain Objects for Collective
Adaptive Systems

In previous chapters, and through the description of the travel assistant
system, we discussed how modern service-based systems are progressively
becoming more heterogeneous. They actually form socio-technical sys-
tems, composed of distributed entities (e.g., services and service providers,
software and human participants) interacting with and within the environ-
ment. Moreover, we have seen how these systems operate under constant
perturbations that are due to unexpected changes in the environment and
to the changes in the behavior of the participants (i.e., services, users).

In previous chapters, we have seen how adaptive service-based systems
can be modeled, through domain objects (in chapter 4), and how they oper-
ate in open and dynamic environments, through incremental and dynamic
adaptation (in chapter 5), from a single-user point of view. However, the
level of complexity of modern systems comes specifically from bringing to-
gether and combining in the same operating environment heterogeneous
and autonomous components, systems and users, with their specific con-
cerns. In this context, multiple participants must adapt their behavior in
concert to respond to critical run-time impediments. Furthermore, also
by considering the mobility domain as an example, we already introduced
the collective nature of some mobility services (e.g., ride-sharing), as those
belonging to the emergent shared economy trend. As a consequence, we
argue that for a service-based system to be resilient, adaptation must be
collective.
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With these premises, in this chapter we deal with the design and exe-
cution of Collective Adaptive Systems. The term Collective Adaptive Sys-
tems (CAS from here on) has been introduced in the literature to denote
large-scale systems that may present substantial socio-technical embedding
[129]. They typify systems with complex design, engineering and manage-
ment, whose level of complexity comes specifically from bringing together
and combining in the same operating environment heterogeneous and au-
tonomous entities, systems and users, with their specific concerns. We
have already seen that to be robust against the high degree of dynamism
of their operating environments, and to sustain the continuous variations
induced by their socio-technical nature, these systems need to self-adapt.
Indeed, self-adaptation is an important feature of complex software sys-
tems. However, it is often seen as a means to automate management ac-
tivities in order to meet desired requirements, such as minimizing resources
and costs (e.g.[130]). In a CAS instead, self-adaptation is a feature of the
collectiveness. Individual entities may “opportunistically” enter the system
and self-adapt in order to leverage other entities’ resources, functionalities
and capabilities to perform their task more efficiently or effectively. But,
the collaborative nature of the system, makes this self-adaptation much
trickier [131]. Changes in the behavior of one entity may break the consis-
tency of the whole collaboration, or have negative repercussions on other
participants.

Adaptation must, therefore, be collective. Entities must be able to
self-adapt simultaneously and, at the same time, preserve the collab-
oration and benefits of the system (or sub-system) they are within.
Self-adaptation of an individual entity is therefore not only finalized to
the achievement of its own respective goals but also to the fulfillment
of emerging goals of the dynamically formed sub-systems.

To model CAS within our framework, extensions to the domain objects
model are required, in order to deal with both the collective nature of
services and their collective adaptation. In this chapter, we introduce and
detail (1) the extensions made to our approach to make it suitable for
modeling CAS; (2) the collective adaptation algorithm defined to manage
the collaborations among entities allowing them to simultaneously self-
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adapt, possibly without breaking the consistency of the collectiveness.

This chapter is mainly founded on the work presented in [30] and it
further extends it. In particular, the work in [30] has been performed in
the context of the ALLOW Ensembles European project [35] that is part
of the Fundamentals of Collective Adaptive Systems (FoCAS) initiative 1.

The rest of the chapter is structured as follow. We start by giving an
overview on CAS in section 6.1. To demonstrate the generality of the
approach, we apply it to two application domains: the Urban Mobility and
the Surveillance systems, which are described in section 6.2. Section 6.3
is devoted to the extensions made to the domain objects model to design
CAS (in section 6.3.1), and to the definition of the collective adaptation
algorithm to perform collective adaptation (in section 6.3.2). The formal
model of the extended approach is given in section 6.4 while, its evaluation
applied to the two different applications domains is reported in section 6.5.
In conclusion, a discussion closes the chapter in section 6.6.

6.1 Related Work on Collective Adaptive Systems

In this section we will review recent works on coalition formation and
decision-making for multi-agent systems, on component ensembles and on
run-time adaptation in multi-agents systems.

Coalition formation has been widely studied in game theory and eco-
nomics. In multi-agents system, and more in general in Artificial Intelli-
gence (AI), coalition formation has been used as a means for dynamically
creating partnerships or teams of cooperating agents. The problem in-
volved in the maintenance of cooperation in a social group is generally
called the “social dilemma”, for which the n-person Prisoners’ Dilemma
game is often used as a typical toy example.

According to [132], if we view the population of agents A as a set,
then each subset of A is a potential coalition. Coalitions in general are
goal-directed and short-lived; they are formed with a purpose in mind and
dissolve when that need no longer exists. Within a coalition, the organi-
zational structure is typically flat, although there may be a distinguished

1 http://www.focas.eu/
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“leading agent” which acts as a representative and intermediary for the
group as a whole.

Many works on coalition formation in multi-agents systems, e.g. [133,
134, 135], use the assumption that all agents (or a subset) can directly
communicate with each other, which is not realistic in the real world. [136]
tackles the problem of coalition formation in multi-agents systems in a
neighbourhood agent network (a network in which agents communicate
directly only with their neighbours). Agents can participate to several
coalition at the same time, by indicating for each of them the degree of
involvement (DoI). A coalition is initiated by an agent issuing a task; such
an agent is called initiator. Then the initiator contacts its neighbours
trying to find a subset of them satisfying the proposed task. If there is
no a subset of its neighbours able to satisfy the task, then the initiator
randomly selects a neighbour as mediator, in order to contact the mediator
neighbours.

A task is satisfied when the coalition that has been formed have the
resources required by it. When the initiator contacts its neighbours, then
a negotiation takes place to determine what is the degree of involvement
of the agent. The negotiation protocol allows an agent to make multiple
agreements with other agents and to cancel temporary agreements without
paying penalty. Indeed during the coalition formation all the agreements
made by the agents with the initiator are considered temporary and can
be aborted by both the initiator and the agents before the coalition for-
mation. When a coalition is created, the agreements cannot be cancelled.
Negotiation is based on offer/counteroffer accept protocol. During its life
in a coalition, an agent can adapt its DoI in order for example to join
another coalition. By modifying its DoI in a particular coalition, an agent
will pay a penalty. Hence adaptation mechanism is in charge of adjusting
agent DoI values in current coalitions to minimize the agent penalty when
it joins a new coalition.

Multi agents systems have been applied in a variety of applications
ranging from supply chains management [137], to complex software systems
building [138], and to multi-satellite mission planning [135]. Here, we take
in consideration solutions proposed in different areas.

Regarding the considered agent type, there exist few solutions which

130



are application specific i.e. we regard them as homogeneous agents (e.g., [139],
[136]) while most of the related work is more general and it includes agents
with different types of roles i.e. heterogeneous agents (e.g., [140], [141],
[142], [135]).

Regarding the agent behavior (i.e., whether the agent acts in a selfish
or cooperative way), while some of the works include solutions where the
agents cooperate to achieve a specific common goal, typically the literature
in game theory assumes utility maximizing agents. They cooperate if they
have the right incentives. They break from a coalition if they can do better
with another coalition, or alone.

Regarding the coalition management strategy exploited (i.e., De-
cision Making) we have few studies where in the solution a centralized
coordinator is designated to collect information from all the agents and
then to disseminate a decision to the whole group. However, such a strat-
egy interferes with the system’s scalability and robustness: the coordinator
can easily become a communication bottleneck, and it is also a potential
point of failure for the system. Because of that, most of the works men-
tioned here propose decentralized approach. As remarked in [143], the
decision making in large distributed systems is a difficult problem.

The centralized decision making approach (which is the one typically
adopted) is to collect all the information from the agents in a single cen-
ter and solve the resulting optimization problem (see, e.g., [144]). Such
centralized solution for a sufficiently large number of agents becomes im-
practical [143]. However, these difficulties can be overcome by allowing
the agents to cooperate or self-organize in solving this distributed deci-
sion problem. The main issue in this decentralized approach is identifying
which agents need to communicate, what information should be sent, and
how frequently [143]. The work in [143], deal with the multiagent collab-
oration problem by using analytical techniques. In particular, it requires
that several assumptions be made about the form of the problem: (i) the
decisions of the individual agents are represented by elements of a contin-
uous and finite-dimensional vector space; (ii) the agents are coupled via a
shared objective function that is continuous and twice differentiable, and
(iii) there are no interagent constraints.

Biological collective behaviors, where coordinated global behavior emerges
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from local interactions, have inspired decentralized approaches in a large
variety of application domains, including mobile robot exploration, sen-
sor network clock synchronization, and shape formation in modular robots
[145]. Research effort has also been devoted to addressing coordination
challenges in large multi-agent systems where agents are spatially dis-
tributed or heterogeneous. For instance, it has been provided support
for reaching group consensus by one or a few better-informed agents (see,
e.g., the work in [145]), where it is shown how the number of informed
agents (i.e., the ones able to obtain important information not available to
others) and their confidence levels affects the consensus process.

Master-slave schema has also been adopted for context-driven dynamic
agent organization (e.g., in the MACODO organization model [146]). In
such type of agent organisation, the master agent has complete knowl-
edge of the organisation state and controls the organisation dynamics in
a centralised way. Master agents of different organisations can cooperate
(exchanging among each other some reduced state information) in order
to achieve some common goal (for example, by merging their respective
set of agents into a single organisation). Finally, in [139] is presented a
decentralized and dynamic method where coalition formation is achieved
by opportunistic aggregation of agents, while maximizing coalition benefits
by means of taking advantage of local resources in the grid.

In the literature there exist lot of solutions regarding a coalition of
coordinating agents where each agent plays a specific role known as chore-
ography. More in general, a service choreography is a distributed service
composition in which services interact without a centralized control. Sev-
eral work have faced the problem of adaptation in service choreography,
see [147] for an exhaustive survey. For instance, [140] proposes a frame-
work for programming distributed adaptive applications. Applications are
programmed using a choreographic language (called AIOC) suited for ex-
pressing patterns of interaction from a global point of view. AIOC allows
the programmer to specify which parts of the application can be adapted.
Adaptation takes place at runtime by means of rules, which can change
during the execution to tackle possibly unforeseen adaptation needs. The
framework is also endowed with formal proofs of correctness and deadlock-
freedom.
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A group of interacting agents can also be seen as an ensemble. SCEL [141]
is a formal language that provides abstractions for autonomic systems in
terms of behaviors, knowledge, aggregation and policies. The most inter-
esting part for us it the abstraction for aggregation. In SCEL it is pos-
sible to define ensembles as a set of components, and the choice of which
components participate at runtime to a certain ensemble is based on the
satisfaction of certain predicates. Moreover SCEL exploits predicate-based
communication, in order to support ensemble-based communication.

[148] presents an ensemble based component model, based on the idea
that the only way for components to bind and communicate is via an en-
semble. Hence an ensemble embodies a dynamic binding among a set of
components and thus determines their composition and interaction. As
in [141] the membership to a particular ensemble is determined by pred-
icates. Moreover, components belonging to an ensemble are not able to
direct communicate with each other, there has to be an ensemble coordi-
nator that is in charge of sharing the knowledge among all the participants.

[142] gives a formal foundation for ensemble modelling. An ensemble
is defined in terms of roles and role connectors. A role can be seen as
a meta-component (or a type) that can be instantiated by components of
different types. Role connectors specify the I/O operations among roles. A
role is endowed with a cardinality, thus it is possible to control at runtime
the number of component playing a particular role. Moreover the runtime
behaviour of an ensemble is given by means of an automaton. Noteworthy,
a component participating into an ensemble can adopt a role (either by
entering into an ensemble or by playing an additional role) or can drop
a role. The idea of role is close to ours, but in our approach instead of
defining connections among roles in the ensemble, we specify consistency
rules for the adaptation, by leaving to cell the freedom of interaction.

Concerning the hierarchical structure of coalition, allowing ap-
proaches to deal with systems of systems, there exist only few studies where
the approaches take in consideration the hierarchy of the system, thus con-
tributing to scalability. Example of a coalition formation mechanism which
allows a hierarchical structure is presented in [142]. The approach is named
Helena - Handling massively distributed systems with ELaborate ENsem-
ble Architectures and it represents a modelling technique centred around
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the notion of roles teaming up in ensembles. Ensembles are built on top
of a component-based platform as goal-oriented communication groups of
components. The functionality of each group is described in terms of roles
which a component may dynamically adopt.

Concerning the decentralized self-adaptation, we have some studies
which discuss about approaches which can deal with adaptation. In order
to deal with increasingly growing complexity of the mission-critical software
systems, there are some recent works which take into account adaptation
at run-time. Contemporary mission-critical software systems are often ex-
pected to safely adapt to changes in their execution environment where
run-time adaptation mechanisms reduce the complexity of the system. For
example, in [149] is presented an adaptive run-time model used to establish
a flexible information processing within a group of heterogeneous robots,
while in [150] is presented a reusable framework for developing adaptive
multi-robotic systems for heterogeneous robot teams using an organization
based approach.

Existing works for distributed self-adaptive systems are typically based
on multi-agent and MAPE loop paradigms [151], [152]. More specifically,
the system is decomposed in self-handling software units, which collaborate
and coordinate in a distributed way. In [135], for example, the life-cycle of
each agent is decomposed into three steps: “Perceive - Decide - Act” where
the “Decide” phase is the key step where the agent chooses with action it
has to perform using its partial perceptions.

In [153], it is presented a rigorous approach to decentralising the control
loops of distributed self-adaptive software used in mission-critical appli-
cations. Specifically, it uses quantitative verification at runtime, first to
agree individual component contributions to meeting system level quality-
of-service requirements, and then to ensure that components achieve their
agreed contributions in the presence of changes and failures. All verifica-
tion operations are carried out locally, using component-level models, and
communication between components is infrequent.

Discussion.

In conclusion, we reviewed these works according to some criteria, such
as (i) the agents type (i.e., homogeneous or heterogeneous); (ii) the agents
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behavior (i.e., selfish or cooperative); (iii) the coalition management strat-
egy (i.e., centralized or distributed); (iv) the hierarchical structure of coali-
tions (to support systems of systems); and, (v) the adaptation application
(i.e., design-time or run-time adaptation). What emerges from our review
is essentially that each work focuses only on one or few criterion. To the
contrary, there is the need for approaches dealing concurrently with differ-
ent aspects, and possibly all the before-mentioned features, making them
able to manage complex systems, such as CAS. These approaches should
be able to manage both cooperative and selfish behavior between agents.

Furthermore, it is extremely important that the management of coali-
tion is decentralized, in such a way of eliminating the single point of
failure and potential bottlenecks in the system.

Lastly, the adaptation must be performed at run-time to deal with the
openness and dynamicity of the environment.

This chapter addresses the challenge of collective adaptation in service-
based systems, by exploiting the design for adaptation approach, presented
in this dissertation, that leverages also on the key features of service-
oriented design to support the modeling, development, and execution of
CAS operating in dynamic environments. Key properties of our approach
are the emphasis on collaboration towards fulfillment of individual diverse
goals and the heterogeneous nature of the system with respect to roles,
behaviors and goals of its participants. These properties distinguish our
approach from other types of collective adaptation approaches, like for in-
stance swarms, where all elements of a community have a uniform behavior
and global shared goal [154], and multi-agent systems and agent-based or-
ganizations [155], where there may be several distinct roles and behaviors,
but the differentiation is still limited and often pre-designed. While exist-
ing approaches normally deal with CAS through isolated adaptation, we
propose a framework to build CAS that fully addresses the challenge of
collective behavior of systems by fulfilling the following requirements:

R1. Support for a highly dynamic environment and an open and dynamic
nature of the system where entities communication and adaptation han-
dling are context-aware.

135



R2. Support for large-scale distributed configuration of the system, with
different decision management strategies (from hierarchical to peer–to–
peer).

R3. A collective adaptation approach allowing entities to collectively adapt
at runtime and in a decentralized manner, guaranteeing the reliability of
the system.

The approach is evaluated in two different application domains, namely a
Urban Mobility System (see section 6.2.1), aiming at the management of
multi-modal and collaborative mobility in a smart city, and a Surveillance
System (see section 6.2.2), devoted to the detection and handling of intrud-
ers in private companies. The application and evaluation of the approach
in these very different domains allows us to demonstrate its scalability and
reliability when applied to real-world scenarios, as well as to prove its ca-
pability of successfully deal with different problems, both in terms of scope
and nature. In the next section, we describe the two scenarios that will
drive us through the chapter.

6.2 Application Scenario Examples

To better understand the class of systems we intend to approach, in this
section we give two motivating examples of systems characterized by the
aforementioned requirements. In particular, these systems are both char-
acterized by the collective and cooperative nature of their services.

6.2.1 The Urban Mobility System

This example refers to the specification of a multi-modal and collaborative
Urban Mobility System (UMS). Differently from the travel assistant pre-
sented in section 3.1 that was focused on single users, the goal of the UMS
consists in the collaborative exploitation of the city transport facilities,
while providing real-time, and customized mobility services for the whole
travel duration. To this aim, the UMS exploits a variety of heterogeneous
services, from city mobility resources (e.g., traditional public transporta-
tion, bike sharing, flexibus), with their transport service functionalities
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(e.g., registration, booking), to general-purpose ones (e.g., different pay-
ment services). All these services are often provided by autonomous enti-
ties. The UMS purpose is twofold: (i) integrate the available services sup-

Figure 6.1: Urban Mobility System: an overview.

porting the planning (multi-modal journey planners), organization (book-
ing and payment services), and execution (real-time availability of services)
of a trip; (ii) help citizens to deal with context changes that may affect a
journey, with the introduction of alternatives or different planning solu-
tions, by exploiting the adaptation abilities of the involved entities, in a
collective manner. Moreover, the UMS operates in a continuously changing
and complex environment. Each service may enter or leave the system at
any time (e.g., a new bike-sharing service), as well as it may change or ex-
tend its offered functionalities, making the system open and dynamic. The
dynamism is also given by the systems context, whose change can affect
the operation of the system (e.g., traffic jams, bus delays, on-line payment
services unavailable) (R1). The UMS is characterized by the involvement
of different entities playing different roles. First of all, it requires an ac-
tive involvement of citizens. Then, each transport service is handled by
an entity manager, acting also as a mediator between the passengers and
third party services. Drivers are also involved, by dynamically interacting
both with the system and with the passengers of their routes. Finally, the
UMS supervises the whole system, by providing integration between all the
involved parts. The system results in an adaptive hierarchy of entities, as
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shown in Figure 6.1, that dynamically evolves in response to the evolution
of the environment and the involved entities (R2). Moreover, in order to
support a sustainable mobility within the urban environment, the system’s
intent is that of inducing users to prefer collective mobility solutions (e.g.,
flexibuses, car sharing), both during the normal execution of the system
and in case an adaptation need arises (e.g., intense traffic on the route).
To this aim, each entity is able to interact with other entities, to notify,
solve or manage problems, as well as to adapt its own process in order
to apply collective and adaptive solutions (e.g., the flexibus changes its
path) (R3). In particular, in the scope of our scenario, we focus on the
flexibus and car pooling collective mobility services. Flexibus is a modern
transportation service, that combines the features of taxi and regular bus
services. A flexibus system manages on-demand routes defined as a net-
work of stops (pickup points) and provides to passengers transportation
between any of these points. Car pooling, instead, provides integration
between independent drivers and passengers.

6.2.2 The Surveillance System

This example refers to a Surveillance System (SurSys) for the premises of
a private company [156]. The objective of the system is the detection of in-
truders entering the factory buildings. The system involves heterogeneous
entities: (i) smart devices, such as Unmanned Aerial Vehicles (UAVs) fol-
lowing specific protocols as defined in the service agreement of the com-
pany; movable cameras placed on the top of the buildings; fixed sensors
in strategic places monitoring movements in the environment. Next there
are (ii) physical persons, such as guards controlling the surveillance pro-
cess and maintainers that are in charge of maintaining the used equipment
(e.g., drones, cameras, or sensors). Eventually, (iii) manager entities for
the whole management of the system, such as ground stations handling
multiple drones and receiving telemetry data, also used to do simple recal-
culations of the missions, and a central station that can be located some-
where in the cloud. As regards the behavior of the SurSys, besides the
application logic devoted to the detection of intruders, from an adaptation
point of view, each entity provides its adaptation logic to be played in case
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adaptation needs arise (e.g., the detection of obstacles by a drone).

Figure 6.2: Surveillance System: an overview.

The number and the type (e.g., new type of drone/sensor) of the enti-
ties in the system can vary according to the size of the area, the number
of buildings and other characteristics of the company that wants to use
the SurSys. Moreover, services can change their functionalities, or offer
new ones (e.g., a drone starting to take photos), requiring for an open
and dynamic system (R1). Differently from the UMS, the SurSys follows
a decision management strategy that is a mix between the peer–to–peer
and the hierarchicalone that better fits its characteristics. Indeed, in this
system there is neither a central supervisor nor different abstraction levels
between the involved entities. In contrast, according to the current con-
text and to the specific goal to reach, entities can dynamically organize
themselves in sub-systems which collaborate in a peer–to–peer manner to
accomplish their work (see Figure 6.2) (R2). Moreover, the entities must
avoid to bring the system to a halt, being able to react to dynamic context
changes. To this aim, entities must collaborate in order to better deal with
unexpected problems, by adapting their own processes applying collective
solutions (e.g., the Maintainer can manually drive a drone with problems,
while the Ground Station sends a new drone) (R3).

In the next section, we present the extensions made to the design for
adaptation models (i.e., domain objects model) to make it suitable for the
management of CAS.
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6.3 Domain Objects for Collective Adaptive Systems

In this section, we present the extensions applied to our design for adapta-
tion approach in order to modeling CAS (Section 6.3.1), and the collective
adaptation algorithm that has been realized to perform the collaboration
among the entities of a CAS, in cases where it needs to adapt (Section
6.3.2). Both the design approach and the collective adaptation algorithm
have been defined by addressing the three requirements identified in section
6.1.

6.3.1 Modeling of Collective Adaptive Systems

The Domain Object model presented in chapter 4 has been defined with
the purpose of modeling and executing adaptive service-based systems.

To allow system entities to collectively adapt, dealing with adaptation
needs that can be raised both by the environment and by the entities them-
selves, the model has been extended with specific constructs. Indeed, while
till now we used domain objects to model services, we aim now to exploit
them to model entities. Moreover, in CAS the concept of role is also rel-
evant. A role models the way in which different entities can interact and
collaborate (e.g., bus driver, bus passenger, bus company). A key concept
are ensembles, that are modeled over the dynamic network of domain ob-
jects, as groups of domain objects and that, although autonomous in their
execution, share common goals and might need to collectively handle run-
time adaptation problems. For instance, in the UMS scenario, an ensemble
is that made by the flexibus driver, the route manager handling the specific
route, and all the passengers subscribed to the route, as highlighted in Fig-
ure 6.1 by dotted lines. In our framework, ensembles are modeled by using
an XML-like language, as reported in Figure 6.3, where an example of the
before-mentioned ensemble is given. Each participant is modeled as a do-
main object and behaves autonomously, but if something occurs (e.g., the
route is blocked), they should collectively adapt to fulfill collective goals
(e.g., being on time at the destination point). Moreover, ensembles can
also involve entities at different levels (as highlighted in Figure 6.1 with
dotted lines). An ensemble can be made by the flexibus company and the
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car pooling company, to allow different companies to support each other,
in case of adaptation needs spanning over the scope of a single transporta-
tion mean. Lastly, when an intra-ensemble adaptation can not be solved,
inter-ensembles adaptation can be performed.

1<tns:ensemble name="RouteA" xmlns:tns="http ://das.fbk.eu/Ensemble"

2 xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

3 xsi:schemaLocation="http ://das.fbk.eu/Ensemble.xsd">

4 <tns:domainObjectType >RouteManager </tns:domainObjectType >

5 <tns:domainObjectType >FlexibusDriver </tns:domainObjectType >

6 <tns:domainObjectType >RoutePassenger </tns:domainObjectType >

7</tns:ensemble >

Figure 6.3: Example of the Route Ensemble Model.

In Figure 6.4 we depict a domain object (as the one reported in Figure
4.2) equipped with the new constructs extending it. In the following, we

Figure 6.4: Extended Domain Object.

describe these new elements and their usage.

To enable collective adaptation, each domain object implements a set
of collective adaptation solvers (from here on, simply solvers), as well as

141



a set of collective adaptation handlers (from here on, simply handlers)
(see Figure 6.4).

Solvers model the ability of a domain object to handle one or more is-
sues. Each solver relates to the particular issue that it can handle. Since
the environment changes frequently and unpredictably, the system requires
constant monitoring. Handlers are used to capture issues, during the nom-
inal execution of a domain object, and to trigger the appropriate solver.
Each handler refers to a finite scope in the core process of a domain ob-
ject. An example of scope is shown in Figure 6.5 and it refers to the core
process of the domain object implementing the role of a Flexibus Driver.
Furthermore, an handler can be of two different types:

Figure 6.5: Scope in the Flexibus Driver core process.

• onExternalIssue handlers are used to catch issues coming from other
domain objects in the system (both in the same or in a different en-
sembles);

• onInternalIssue handlers are devoted to monitor properties expressed
on the own knowledge of the domain object, and catch the issues
arising when this properties are violated.

For instance, in Figure 6.6 we report the XML listing modeling the
handlers related to the scope in the flexibus driver process of Figure 6.5.
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The flexibus driver can catch the Intense Traffic external issue (lines 7-10),
coming from the external environment, as well as the Bus Broken internal
issue (lines 11-14), thanks to its knowledge.

1<tns:scope name="FD_scope1">

2 <tns:invoke name="FD_RouteStartedNotice"></tns:invoke >

3 ...

4 <!--Here the set of the activities in the scope to which

5 the following handlers refer -->

6 <tns:eventHandlers >

7 <tns:eventHandler name="IntenseTraffic">

8 <tns:onExternalIssue onEventName="IntenseTraffic"/>

9 <tns:callSolver solverType="Route -IntenseTraffic"/>

10 </tns:eventHandler >

11 <tns:eventHandler name="BusBroken">

12 <tns:onInternalIssue onInternalKnowledge="DP-BusStatus.broken"/>

13 <tns:callSolver solverType="Route -BusDamaged"/>

14 </tns:eventHandler >

15 </tns:eventHandlers >

16</tns:scope>

Figure 6.6: Collective Adaptive Handlers Example.

A collective adaptation process is triggered by a run-time occurrence of
an extraordinary circumstance corresponding to an issue. The resolution of
the issue is the outcome of the triggered adaptation process in which all the
affected domain objects adapt collaboratively and with a possible minimal
impact on their execution. In the next section, we describe in details the
collective, yet decentralized, handling of a collective adaptation.

6.3.2 Execution of Collective Adaptive Systems

During the normal execution of the system, through the interactions run-
ning between domain objects, ensembles are formed. In Figure 6.7, we
show an example of the Route Ensemble, as modeled in Figure 6.3. In
particular, we show how a user interacting with the UMS (e.g., by booking
a flexibus ticket), can enter a particular ensemble (e.g., Route Ensemble
A) with a particular role (e.g., RoutePassenger). Ensembles can be created
spontaneously and change over time: different entities may join or leave
an existing ensemble dynamically and autonomously. The termination of
an ensemble is also spontaneous. It may occur because the participants
have reached their goals, or because the ensemble itself has, at some point,
ceased to provide benefits. For instance, during the execution of the UMS,
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Figure 6.7: Route Ensemble example.

users start to subscribe to a specific flexibus route, by exploiting func-
tionalities of the route manager. This means that the route manager has
previously set the route and assigned a driver to it. In this way, the en-
semble made by the route manager, the flexibus driver and the passengers
is set up.

While the execution goes on, the ensemble can evolve. New passengers
can subscribe to the route, while others can leave it.

However, to deal with unpredictable changes, local adaptation is not
enough, since the scope of these changes goes beyond the single entity.

Typical changes occurring in dynamic environments are characterized by
the fact of affecting different entities:

1. the entity directly related to the change (e.g., a route interrupted
directly affects the flexibus driver);

2. the entities with which it interacts, that is the ones belonging to the
same ensemble (e.g., both the passengers on board and the ones wait-
ing at the bus stops);

3. the entities that are involved as a consequence of the adaptation exe-
cuted to solve the problem (e.g., the UMS is consulted to find a new
plan for the waiting passengers); these entities can belong to different
ensembles with respect to the entity raising the initial issue.
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This demonstrates the need for collective adaptation approaches able to
deal with dynamic changes, and whose scope can be, in the worst case, the
entire system. Thus, such an approach must provide one or more decision
management strategies, in order to allow different entities to communicate
and cooperate in a collective manner.

The collective adaptation process is handled in a decentralized manner
by the domain objects involved, directly or indirectly, in an adaptation
need.

As depicted in Figure 6.4, each domain object implements a Monitor -
Analyze - Plan - Execute (MAPE) loop [157] that allows for the dynamic
interaction with the other domain objects. In Figure 6.8, the state machine
(SM) representing the operation of a MAPE loop is shown. For readabil-
ity reasons, we use a color code, which is assigned to the four phases of
a MAPE loop. In the following, we highlight the most interesting states
of the SM. In the Monitoring phase, each domain object executes its core
process, while monitoring the environment through active handlers. Issues
can come both from the domain object itself (Issue Triggered state) or from
a different domain object, which asks support for solving an issue (Issue
Received state). This starts the Analysis phase, where the issue solver is
called (Local Solver Called state). In the Planning phase, if the solver has
found a solution (Solution Found state), the collective planning phase starts
(gray area in Figure 6.8). All the domain objects involved in the issue
resolution process will collectively collaborate to solve the issue. Here,
we explore the more interesting solution with targets edge, representing the
case in which the solution provided by the solver foresees the involvement
of other domain objects, which are firstly found (Targets Found state), and
then triggered (Issues Targeted state) to be involved in the resolution pro-
cess. Once the current domain object receives feedback from the triggered
domain objects (Solution Received state), it selects the best solution (Solution
Chosen state) (e.g., by applying the approach in [158, 159]). At this point,
we should distinguish two cases. If the issue was triggered internally (root
node edge), the domain object first asks the involved targets to commit their
local best solution (Ask Partners To Commit state); then it waits for their com-
mit to be done (All Partners Commit Done state), and eventually it commits
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Figure 6.8: MAPE State Machine.

its local solution (Commit Local Solution state). Otherwise, if the issue was
coming from outside (not root node edge), the domain object reports the
feedback to the issues sender (Solution Forwarded state), and then it waits
for a future commit (Commit Requested state). The domain object can receive
a positive or a negative reply for its proposed solution. In both cases, it
executes a solution commit (Commit Local Solution state), which will results
to be empty in the negative case.

In conclusion, domain objects are dynamically connected also through
their MAPE loops interacting to solve collective adaptation problems.

6.3.3 Collective Adaptation Algorithm

In this section we give the pseudo-code definition of our Collective Adapta-
tion Algorithm that is supported by the MAPE loops, handlers and solvers
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used in the domain objects modeling. We focus on the main procedures,
and we give the point of view of a single domain object whose monitor
captures an issue. The issue resolution process generates a resolution tree,
modeling all possible solutions for a given issue, over which the best so-
lution is selected. First of all, the function startCA (lines 1-7) takes the
detected issue and calls the main function resolveIssue, by passing to it
both the issue and the entity. After the issue resolution process, if a col-
lective solution has not been found, the entity will self adapt (line 5). The
resolveIssue function (lines 8-36) is called locally by the domain object de-
tecting the issue. If needed, the function is recursively invoked to trigger
the issue resolution across multiple domain objects in a distributed way.
Indeed, the domain object initially calls its solver for the specific issue, if
any (line 10). The called solver provides a solution, which may comprise,
in turn, one or more sub-issues (line 11) that are triggered as a consequence
of the first one.

In order to solve each sub-issue, the domain object must establish one
or more communications with other connected domain objects (line 12).
For each communication, the set of potential solvers is identified through
all reachable domain objects (e.g., targets) (line 16). Once all targets have
been identified, to understand if and how they can handle the sub-issue,
the resolveIssue function is called remotely on each target by a remote pro-
cedure call (rpc) (lines 17-20). When the domain object receives all the
potential solutions for the invoked targets, the Analytic Hierarchy Process
(AHP) algorithm [158, 159] is executed to identify the best solution (line
22). If a best solution has been identified, we can observe two different
behaviors: (i) if the domain object running the algorithm is not the root
(i.e., the one from which the resolution process started), it stores the so-
lution locally (line 26) and it waits for a commit request coming from the
domain object that is its father in the issue resolution tree. Otherwise, (ii)
the root domain object executes the commit of the best solution (line 28).
Since the best solution is implicitly made of sub-solutions related to the
different entities involved, the commit function (lines 37-42) acts as follows.
Given the tree-path corresponding to the best solution, the root domain
object asks to all the targets on this path to commit and execute their
sub-solution (lines 38-40). Lastly, it commits the best solution (line 41)
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and executes it, by ending the issue resolution process.

Algorithm 1 Collective Adaptation Algorithm.

1: function startCA(issue)
2: if resolveIssue(issue, this) then
3: Issue solved via CA.
4: else
5: this.selfAdapt
6: end if
7: end function

8: function resolveIssue(issue, entity)
9: solutionFound = False

10: solution = callSolver(issue)
11: for all issue ∈ solution.issues do
12: Coms = deriveComs(issue)
13: for all comm ∈ Coms do
14: S = ∅
15: bestSol = null
16: T = findTargets(comm)
17: for all target ∈ T do
18: S = S∪
19: rpc(resolveIssue(comm.issue, target))
20: end for
21: end for

22: bestSol = AHP(S)
23: if bestSol! = null then
24: solutionFound = True
25: if entity != root then
26: store(bestSol)
27: else
28: commit(bestSol, T )
29: end if
30: else
31: this.selfAdapt
32: return
33: end if
34: end for
35: return solutionFound
36: end function

37: function commit(bestSol, T )
38: for all target ∈ T do
39: execute(target.bestSol)
40: end for
41: execute(bestSol)
42: end function

In Figure 6.9, we give an example of the communication between two
single entities. We show the possible flow of information when an issue
(e.g., RouteABlocked) is raised internally by an entity (e.g., Flexibus Driver).
This is a simplification for presentation purposes with the aim of showing
the type of communication and synchronization between entities. We have
to consider that in normal scenarios our framework is able to deal with
multiple entities that collaborate to solve issues.

The labels with ordered numbers represent the order in which the dif-
ferent computational states of the respective state machines depicted in
Figure 6.8 are executed. Focusing on the Flexibus Driver, in the Analyze
phase he selects the solver RouteA-Blocked able to solve the issue triggered
during the Monitor phase. In the Plan phase, and more precisely in the
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Issue Targeted state, the solution generated by the selected solver includes
the triggering of an extra issue (e.g., NotifyRouteABlocked) captured in the
Monitor phase of the Route Manager, in its Issue Received state. The Route

Manager, through its Analyze phase finds the right solver, ManageRouteA able
to solve the captured issue. The solution generated by the solver is for-
warded to the Flexibus Driver during the Plan phase. At this point the
Route Manager goes in the state Solution Forwarded. At this stage, the Plan
phase of the Flexibus Driver is resumed; after an internal reasoning, it will
move in the state Commit Request. This means that the Route Manager is asked

Figure 6.9: Overview of the Communication between two Entities.

to commit the previous calculated solution (Commit Requested state). The
Route Manager proceeds with its Execute phase where the Local Commit and
the Commit Done states are executed. Finally, when the Flexibus Driver re-
ceives the commit notification from the Route Manager, he simply needs to
start the Execute phase where the Local Commit state is reached.

6.4 Formal Framework

In this section, we introduce the formal model of our approach for collective
adaptation. In section 6.4.1 we formalize the concepts of role and ensemble,
while in section 6.4.2 we discuss how to handle issues and communications.
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6.4.1 Roles and Ensembles

As we have described in section 6.3, our model of collective adaptation
is built around the concept of ensemble that represents a collection of
autonomous entities collaborating to perform certain tasks.

We introduce the notion of the entity to represent actor(s) capable of
playing multiple roles in different ensembles at a given time (e.g., a Person
entity can be a passenger or a driver in a Flexibus Route ensemble).

Definition 20 (Entity). An entity is defined by a set of roles it can play,
ε = 〈R〉.

A role that an entity can play in an ensemble is given by the ways it
collaborates with other roles. Collaboration primarily means taking actions
that change the state of the world. A role also defines a set of issues that
it can produce, i.e., formation of critical situations. When an issue arises
from any sources, a role can choose to handle the issue using one of its
individual solvers. Finally, a role can define preferences that determine
actions it is willing to take. A Role Type is defined as follows:

Definition 21 (Role Type). A role type is a tuple r = 〈rA, rS, U, S, rP 〉,
where:

• rA is a set of action types defined for the role;

• rS is a set of variable types that define the current state;

• U is a set of issue types that can be produced by a role;

• S is a set of solver types that are provided by a role;

• rP is a list of preference types available for a role.

For example, the Passenger role type in a Flexibus Route ensemble can
be defined as follows:

• rA = {embark(p, c, l), debark(p, c, l),walk(p, l1, l2)};

• rS = {at(p, l), in(p, c)};

• U = {delay, cancellation};
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• S = {findWalkingRoute};

• rP = {travel time, travel cost, walking distance}.

The action and variable types are introduced later on. Issues are referred
to things that can go wrong. The primary way for a passenger to handle
any issue in our simplified scenario is to find a walking route to his or her
target location. Finally, each passenger’s preference towards the time, cost
or walking distance may vary.

Definition 22 (Role Instance). A role instance is a tuple ri = 〈riid, r, Ari,
Vri, sri, P,⇑r〉, where:

• riid is the role instance identifier;

• r is a role type;

• Ari is a set of instantiated actions for the role instance;

• Vri is a set of instantiated variables for the role instance;

• sri is a state on the set of instantiated variables;

• P represents the preferences of a role instance;

• ⇑r is a set of active issue resolutions.

For example, in case of the role instance corresponding to the Route
Passenger p3 of Figure 6.7 in Section 6.3.2:

• The set of instantiated actions Ap3 includes all actions that are formed
by assigning objects to the action types embark, debark and walk;

• The set of instantiated variables Vp3 includes all variables that are
formed by assigning objects to the variable types at and in; and

• The state is given by sp3 = {at(p3, l2)}, i.e. the (current) origin location
of p3.

We now explore the definition of ensembles to get an insight into the
collective behavior of multiple roles. Each ensemble describes a certain
type of collective behavior that may take place in the domain of interest.
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Ensemble includes a set of roles and corresponding constraints. The con-
straints can generally be of any kind, but we treat them as role cardinality
constraints (i.e., intervals that bound the number of role instances for each
role):

Definition 23 (Ensemble Type). An ensemble type e is a set of role types
R.

For example, a Flexibus Route ensemble type can be defined as Flexibus
Route = {Passenger, FBDriver, FBCompany}, where FBDriver is the
role type defining Flexibus drivers, and FBCompany is the role type defin-
ing Flexibus companies. An ensemble instance is formed by assigning mul-
tiple role instances to each role type, e.g., a Flexibus Route ensemble in-
stance can have multiple passengers and Flexibus drivers.

Definition 24 (Ensemble Instance). An ensemble instance is a tuple ei =
〈eiid, e, RI〉, where:

• eiid is the ensemble instance identifier;

• e = R is an ensemble type;

• RI is a set of role instances of types in R.

In the next section we explore the definition of issues and communica-
tion.

6.4.2 Issues and Communication

In addition to finding joint plans, collaboration also consists in producing
issues and taking care of issues produced by others. As such, a role includes
a set of issue types it can produce, generally correspond to different critical
situations that can happen to a role of an ensemble. Each issue type
includes a set of parameters describing it:

Definition 25 (Issue Type). An issue type is defined by a set of parameters
u = uP .
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For example, a Flexibus driver can trigger an issue type routeDelay =
delayT ime, delayReason. An issue instance corresponds to a particular
critical situation occurring in an ensemble (e.g., a flexibus delay that hap-
pened to a particular driver at a particular moment in time with a certain
number of passengers waiting or already on-board). It belongs to an ex-
isting issue type and its state is determined by values assigned to issue
parameters:

Definition 26 (Issue Instance). An issue instance is a tuple ui = 〈u, Lu〉,
where:

• u is an issue type;

• Lu : u.uP → V is an assignment function for issue parameters.

Each role, collaborating in an ensemble can provide one or more solvers.
In our formal framework, we have two types of activities that a role instance
can execute during a collective adaptation problem resolution: issue com-
munication and issue resolution. Issue communication is used to send an
issue instance to be solved to a target role instance (see definition below).
The issue instance may be sent to multiple partners at a time in an attempt
to find a better solution. Issue communication comprises a few steps: 1)
the issue is sent to all target roles; 2) the replies are received from the part-
ners, who could resolve the issue; 3) the preferable solution is chosen; and
4) the preferable solution is committed. Formally, a target role instance
and issue communication are defined as follows:

Definition 27 (Target Role Instance). A target role is a tuple t = 〈riid, si, p〉,
where:

• riid is the target identifier (role instance id);

• si is the solver instance invoked to solve the issue si.ui;

• p is the solution proposed by the target. It is a process that the target
role will execute if it will become part of the overall issue resolution.

Definition 28 (Issue Communication). An issue communication is a tuple
↑u= 〈ui, T 〉, where:
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• ui is an issue instance communicated;

• T is a set of target roles.

While the issue communication is a way to propagate resolution activi-
ties between partners, issue resolution corresponds to the high-level model
of internal elaboration being done by role instances. In particular, we as-
sume that the issue instance may either arise internally (when the issue
originally occurs in this role instance) or is received by one of the role in-
stance solvers. As soon as the issue instance is raised, the role instance
may either resolve it locally or send one or a few issues to the other part-
ners as a part of the resolution procedure. The issue resolution is formally
described as follows:

Definition 29 (Issue Resolution). An issue resolution is a tuple ↑r= 〈riid,
ui,Ψ〉, where:

• riid is the identifier of the role instance, from which the issue instance
arrived (null if the issue arouse internally);

• ui is an issue to be resolved;

• Ψ is a set of alternative solutions, each is a tuple ψ = 〈ui,⇑Ou , pext, pint〉
where ui is the issue to be resolved, ⇑Ou is a set of outgoing issue
communications, pext is a process (solution) that is supposed to be
sent to the role instance associated with riid, while pint is the internal
process (solution) for the specific issue instance arrived.

If the resolution is fully local, in each solution ψ ∈ Ψ the set of ⇑Ou of the
outgoing issue communications is empty. Otherwise, ⇑Ou correspond to the
communication of all subissues that must be resolved in order to resolve
the original issue.

The focus here is on collaborating through actions, either when com-
puting an initial shared plan, or when re-planning as a result of issues
triggering.
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6.5 Evaluation of the Collective Adaptation Approach

The collective adaptation approach, based on the extended design for adap-
tation framework, has been designed, implemented and executed in the
context of the ALLOW Ensembles [35] project’s demonstrator , called De-
MOCAS [31]. We will present DeMOCAS in chapter 7, which relates to
the implementation and evaluation of the design for adaptation approach
presented in this dissertation. In this section, instead, we specifically re-
port the evaluation of the collective adaptation algorithm just presented in
this chapter. We realized a Java implementation of the algorithm, and we
have evaluated it by executing experiments in the two different scenarios
described in section 6.2. In our experiments we are concerned with measur-
ing and understanding how the framework performs in providing solutions
in terms of collective adaptation. Thus, we do not focus on the correct-
ness and complexity of the solutions provided by each solver of an entity,
which are usually domain specific, but on the evaluation of our collective
adaptation approach. In the following we present the experiment design
and the discussion of its results.

Experiment Design.
The main goal of our evaluation is to analyze the framework with respect
to its feasibility and scalability in the context of the application scenar-
ios introduced in section 6.2. This goal can be refined into the following
research questions:

• RQ1: Can the framework be used at run-time to manage the adap-
tation of service-based Collective Adaptive Systems?

• RQ2: Is the framework scalable for managing real-sized applications?

In our experiments we perform a stratified random sampling [160]: the
population of all possible sequences of raised issues is divided into a set
of treatments with a uniform distribution between the groups in terms of
the number of raised issues. Random sampling is then applied within the
groups. Each treatment models a sequence of raised issues. More specifi-
cally, in each treatment t we can have a set of different raised issues with
one of the following cardinality: < 1, 250, 500, 750, 1000 >. Moreover, both
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the order of the raised issues within the sequence and the entities raising
them is randomly chosen. As an example, considering the UMS scenario,
the value < 250 > represents the treatment in which the total number of
different raised issues (e.g., RouteBlocked, PassengerDelay, etc.) sums up to
250 issues in total. After the treatments generation, the experiment has
been run.

Discussion of the Results.
The specification of the UMS scenario we used to evaluate our approach
contains 8 ensembles models and 23 domain object models, while the
SurSys scenario contains 5 ensembles models and 24 domain object mod-
els. We have evaluated our techniques using a dual-core CPU running at
2.7GHz, with 8Gb memory. We created 500 treatments for each scenario
resulting in a total of 1000 runs of the experiment.

Figure 6.10: Execution Time per number of raised issues (UMS in the left side).

Figure 6.10 shows the average execution time per number of raised is-
sues, after a sequential execution of 500 treatments, for both the scenarios.
We can observe that after a full loaded execution, our framework can solve
a burst of 1000 issues in under 42 and 30 seconds (s), in the UMS and
SurSys scenarios, respectively. However, it is important to consider that
having burst of 1000 issues all together is very rare.
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In order to better understand how the framework performs when the
complexity of the collective adaptation problems increase, we did as fol-
lows. We consider the number of roles involved in the issue resolution as
the complexity index for each problem. Then, we take into account the
subset of treatments of 500 issues, to evaluate the performance on a set
of equivalent problems. In Figure 6.11 and Figure 6.12 we report the ob-
tained results. For the UMS scenario (see Figure 6.11), we can see that the
considered set of problems involves a number of roles in a range between 4
and 9, while for the SurSys scenario (see Figure 6.12) the range is between
7 and 11. This shows that the problems complexity is almost uniformly
distributed. We can notice that the average execution time moderately
increases with respect to the increasing of the problem complexity, but not
in a linear way. In the UMS scenario we can observe a particular increase
of the execution time for the problems with complexity 9. However, by
analyzing the data, we observed that in a set of 2500 issues resolutions,
only one problem involves 9 roles reducing the performance.

Concerning the scalability of the framework in real-size problems, we
decided to measure the distribution of the total number of issue resolutions
both over the ensembles and roles number, in the different scenarios. As
shown in Figure 6.13, the number of ensembles is between 1 and 4. In
the UMS scenario, for the majority of the problems, the issue resolutions
happens in the scope of 2 ensembles. While, for the SurSys scenario, the
majority of the problems is solved by involving 3 ensembles. Observing the
distribution of the issue resolutions over the roles, as reported in Figure
6.14, we can notice that the trend is almost equivalent to the distribution
measured over the ensembles. In the UMS scenario, in most cases the
issue resolution involves 5 or 6 roles. As regard the SurSys scenario, this
number increases around 9 and 10. These results clearly demonstrate the
scalability of our framework when dealing with real-sized applications.

In conclusion, to demonstrate the generality of our approach, we consid-
ered two large-scale and distributed systems that typically use two differ-
ent decision management strategies. The UMS is hierarchical by nature,
while the SurSys follows both a peer-to-peer and a hierarchical communi-
cation strategy. The experiments showed that our framework performed
well while dealing with both the scenarios. Moreover, by looking at the
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Figure 6.11: Execution Time per number of involved roles for the UMS.

resulting graphics it is possible to clearly distinguish between the different
decision management strategies used by the two different scenarios. For
instance, as emerges from Figure 6.13, in the UMS scenario the system is
often able to solve the problem within the ensemble in which it arises (e.g.,
intra-ensembles resolution). To the contrary, in the SurSys scenario, the
system always solve the problem in the scope of more than one ensemble
(e.g., inter-ensembles resolution). Furthermore, Figure 6.14 reflects the
strategy used by the systems, by showing that systems with a hierarchi-
cal strategy, as the UMS, involves a less number of roles, with respect to
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Figure 6.12: Execution Time per number of involved roles for the SurSys.

those with a peer-to-peer strategy, as the SurSys. For interested reader,
we provide a replication package of our experiments2.

6.6 Discussion

In this chapter we addressed the challenge of collective adaptation in
service-based CAS, by exploiting the design for adaptation approach pre-

2 Replication Package. To allow the easy replication and verification of our experiments,
we provide a complete and portable replication package, which is publicly available at the link
https://github.com/das-fbk/CAS-ICSOC2016.

159



Figure 6.13: Distribution of Issue Resolutions over the number of Ensembles.

sented in this dissertation to support the modeling, development, and ex-
ecution of CAS operating in dynamic environments. Key properties of our
approach are R1) the capability of handling with an open and dynamic
system environment, such as the mobility domain environment; R2) the
support for different decision management strategies, from peer-to-peer
(e.g., SurSys) to hierarchical (e.g., UMS) models; R3) the emphasis on a
collaborative, yet distributed, management of adaptation problems among
entities, as shown by the Collective Adaptation algorithm, also supported
by the MAPE loops equipping each domain object (i.e., entity) in the sys-
tem.
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Figure 6.14: Distribution of Issue Resolutions over the number of Roles.

Following this principle, we can say that our framework supports the
design, development, and operation of CAS that are resilient to a wide
range of changes.

The defined Collective Adaptation algorithm is able to solve adaptation
issues within and among ensembles, which discover the entities able to solve
an issue and to apply adaptation with minimal impact, by guaranteeing
the system reliability.

Lastly, both intra and inter-ensembles adaptation can be performed
with our approach.
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In contrast to the related work analyzed in section 6.1, our approach
gives the possibility to handle both cooperative and selfish behavior be-
tween entities. Furthermore, we apply a decentralized management of coali-
tion, thus eliminating the single point of failure and potential bottlenecks
in the system. As last, as shown by the examples, our approach provides
support for run-time adaptation both in mission critical and safety critical
systems. In summary, comparing to the other works, which focus only
on one or few criterion, we can say that our approach is multi-criterion
with respect to the aspects highlighted in the final discussion in section
6.1. The potentialities of our solution can be summarized in four main
characteristics:

• Generality: as already said, our approach is general, in the sense that
it is not domain or problem specific. This gives us the opportunity to
reuse it in different domains, as we did in this chapter, by applying
it at two different scenarios: the Urban Mobility Systems and The
Surveillance Systems.

• Heterogeneity: key properties of our approach are the emphasis on
collaboration towards fulfillment of individual diverse goals and the
heterogeneous nature of an ensemble with respect to roles, behaviors
and goals of its participants. Indeed, differently from swarms [154],
our ensemble model do not require to the entities to have a uniform
behavior and a global shared goal.

• Scalability: alternative adaptations may be available, and given the
multiple criteria and preferences of the different entities involved in
an ensemble, such adaptations may need to be ranked. To this aim, in
our framework we exploit a multi-criteria ranking approach, based on
analytic hierarchy process (AHP) [158] [161] that allows the selection
of the best adaptation alternatives with respect to the preferences of
the entities involved. Moreover, our approach supports a hierarchical
structure of systems. This is very important because it provides scal-
ability and allows different entities with different knowledge to take
decision at different levels.

• Openness and Incrementality: our solution enables systems with
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collective adaptability to be built as emergent aggregations of au-
tonomous and self-adaptive entities. Ensembles can be created sponta-
neously and change over time: indeed, different entities may decide to
join and/or leave an existing ensemble dynamically and autonomously.
Termination of ensembles may also be spontaneous. It may occur
when some or all entities, involved in an ensemble, leave because, for
instance, they have reached their goals, through collaboration.

As we said before, the collective adaptation approach described in this
chapter has been implemented and evaluated in the DeMOCAS [31] demon-
strator. In particular, DeMOCAS provides also the complete implemen-
tation of the UMS as a CAS, by fully exploiting the extended design for
adaptation approach introduced in chapter 6. Thus, we refer to the next
chapter 7 for more details about the UMS scenario, its usage, its design
and its execution and collective adaptation.

For what concern future work about our collective adaptation in service-
based systems approach, we plan to use our framework in real environ-
ments. In particular, regarding the Surveillance System, our idea is to
integrate it with a suitable extension of the FLYAQ platform [162]. This
platform permits to graphically define civilian missions for a team of au-
tonomous multi-copters via a domain specific language. With respect to
the Urban Mobility System, instead, a future step would be that of integrat-
ing it with an extension of the Open Trip Planner

3 to provide not only the
multi-modal trip planning solutions but also collective mobility solutions
(e.g. car pooling, flexi-buses).

3 http://www.opentripplanner.org/
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Chapter 7

Implementation and Evaluation

With a knowledge of the models, execution handlers and adaptation mech-
anisms that comprise our approach (see chapters 4, 5 and 6), together
with the life-cycle process we can use to shape adaptive service-based sys-
tems (see chapter 3), all that we need is an implementation framework
allowing us to pull these pieces together. On top of this framework we
realized two demonstrators, namely ATLAS [29] and DeMOCAS [31]. In
particular, ATLAS is the implementation of the Travel Assistant repre-
senting the motivating scenario of this dissertation, while DeMOCAS is
a simulator for collective adaptive systems, currently implementing and
executing the Urban Mobility System mentioned in chapter 6. Moreover,
to see these demonstrators in action, or simply inspect the full specifica-
tion of the travel assistant and the urban mobility system, one can freely
download both ATLAS 1 and DeMOCAS 2.

This chapter is specifically devoted to the implementation and evalua-
tion of our design for adaptation framework, performed through the real-
ization and execution of ATLAS and DeMOCAS. Moreover, although we
provide approaches for the design and operation of (collective) adaptive
systems, as well as techniques for performing both individual and collec-
tive adaptations, a sound engineering process for CAS is still missing. In
particular, a CAS is specified at a low level of abstraction (XML files),
a task that tends to be time-consuming and error-prone when the size of
the system grows. Therefore, we extended our framework by specifying a
domain specific language (DSL) for defining CAS, named CAStlE [32].
1 ATLAS is available at: https://github.com/das-fbk/ATLAS-Personalized-Travel-Assistant.
2 DeMOCAS is available at: https://github.com/das-fbk/DeMOCAS.
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Consequently, this chapter is mainly founded on the work presented in
[29], [31] and [32] and it further extends them. The rest of the chapter is
structured as follow. In section 7.1 we give an overview on the design for
adaptation framework and its implementation. Section 7.2 is devoted to
the description and evaluation of ATLAS, while section 7.3 reports details
about DeMOCAS and its evaluation results. CAStlE, instead, is reported
in section 7.4. Finally, we close the chapter with a final discussion in section
7.5.

7.1 Design for Adaptation Framework

The design for adaptation framework has been implemented by using Java
as programming language. Then, we used Eclipse as developing IDE and
Maven for the dependencies development and the project organization.
The component diagram of the framework is reported in Figure 7.1. In
particular, for the implementation of the collective adaptation approach
described in chapter 6, specific components have been developed to design,
implement and deal with collective adaptive systems and the execution of
their collective adaptation. These components are green-colored in Figure
7.1. The framework is composed by five modules, namely the Execution ,
Adaptation , Artificial Intelligence (AI) Planning , Presentation and
Model modules.

The Presentation module implements different components making
the Graphical User Interface (GUI) of the framework, together with the
functionalities allowing the visualization of the execution of running sce-
narios of service-based systems. These components can, then, be used in
the interfaces of the demonstrators developed on top of the framework. We
will see further on in this chapter the different user interfaces of ATLAS
and DeMOCAS, which we are going to describe. In particular, in ATLAS,
which effectively implements the travel assistant, the user interacts with a
Telegram chat-bot 3 acting as the main interface, while a connected demon-
strator shows the execution of the travel assistant process and its dynamic
specializations, which cannot be observed on the Telegram chat-bot. In
DeMOCAS, instead, which is a simulator for CAS and which implements
3 https://telegram.org/
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Figure 7.1: Design for Adaptation Framework Component Diagram.

the urban mobility system scenario, the demonstrator’s interface is ex-
tended with a map, on which the user can easily follow the evolution of
the running scenario. The Presentation module is constantly synchronized
with the Execution module, from which it obtains the details about the
scenario execution.

In the Model module, the Parser is responsible for loading the scenario
files (i.e., the Domain Objects and its constructs, the Ensembles and other
scenario related files) from the file system and parse them. The Process
Models defines the basic building blocks for a process definition (e.g., input,
output, concrete and abstract activities), while the Models, Domain Objects
and Ensembles Managers, are essentially devoted to handle the scenario
models, domain objects and ensembles life-cycles.

The Execution module contains the components for executing adapt-
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able processes. The Process Engine is in charge of performing the execution
of the core processes of the running domain objects instances, by execut-
ing all the corresponding activities. When run-time problems occur, the
Problem Handler creates requests for the Adaptation module.

The Adaptation module implements all tasks related to process adap-
tation. It is called by the Process Engine. When it must tackle the refine-
ment of an abstract activity (local adaptation), as well as an issue resolution
(collective adaptation), it uses the Adaptation Manager and the Collective
Adaptation Manager, respectively. The Adaptation Manager is responsi-
ble for deriving the planning domain by driving the fragments selection
and ranking (see [128]), according to the goal of the abstract activity and
the specific execution context. The Collective Adaptation Manager runs
the collective adaptation algorithm, described in chapter 6, for the issue
that has been caught, by triggering the issue resolution procedure spanning
different domain objects and ensembles.

The AI Planning module sustains the local adaptation of domain ob-
jects, by supporting the refinement of abstract activities. It is in charge of
managing the refinement procedure as an AI planning problem (Planner),
providing the (composition of) fragments to be injected (Composer).

Process Engine Implementation. In the implementation of our frame-
work, the Process Engine enables the execution of automated and adapt-
able processes, modeling the behavior and functionalities of domain ob-
jects. Before ending this section, we want to briefly discuss about Work-
flow Management Systems (i.e., process engines), in relation to the context
of the work presented in this dissertation.

Before the implementation started, we looked for a process engine suit-
able for the integration into our design for adaptation framework. To this
aim, we performed an investigation on available standard process engines
meeting certain conditions, necessary for our purposes. In particular, with-
out going to much into details, we conducted a two-step analysis on a set
of process engines. The first step was focused on a selection driven by
requirements such as, the license type, the release road-map, the com-
munity support, the supported languages and the possibility of extending
the process engine with constructs and/or features required in our frame-

168



work (e.g., abstract activities, process injection). We come out from this
first analysis with a subset of eligible process engines, namely jBPM 4, Ca-
munda 5 and Activiti 6. The second step analysis focused, instead, on more
functional requirements. We performed a set of basic tests to observe and
understand features, such as, how these process engines deal with the syn-
chronization and communication among running processes, the correlation
between processes (i.e., the management of the state of the conversations
currently active), the parallel process execution, the processes data and
variables management, and the external events management (i.e., how a
process can send and receive external events). For a detailed and deeper
evaluation of Workflow Management Systems (WfMS), we suggest to the
interested reader the work in [163]. Among other things, in this work,
the authors state, after their evaluation of WfMS, that it does not exist a
WfMS addressing all the features that one might be looking for. To the
contrary, the selection of a WfMS requires a prioritization approach that
ranks the needed features according to their importance for the intended
specific usage scenario. Based on the results that we obtained from our
analysis of process engines, we completely agree with the authors of [163].

Eventually, after our investigation, we come out with a set of challenges
affecting our final decision. In particular, none of the eligible process en-
gines are thought for dealing with (i) the decentralized management of
processes and (ii) the correlation among different processes that are, in-
stead, fundamental in our framework. As a consequence, we decided to
realize from scratch a process engine implementing the features required
for the execution of service-based adaptive systems realized within our
framework. Essentially, it is a conventional process engine, extended with
some adaptation-related constructs. The extensions relate to:

• the execution of abstract activities and the injection of (composition
of) fragments in place of them;

• the consistency checking to detect conflicting situations requiring the
adaptation of a process (e.g., the violation of a precondition);

• the suspension of the execution of a process to apply adaptation, and

4 https://www.jbpm.org/ 5 https://camunda.org/ 6 https://www.activiti.org/
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the subsequent resumption;

• the multiple-instance processes management (e.g., to jump from a
process instance to another);

• the correlation and synchronization between processes (e.g., to man-
age the state of the active conversations);

• a preliminary implementation of the data-flow management allowing
processes to exchange data during their inter-operation;

Of course, also our process engine does not address all the typical re-
quirements for executing automated processes. We started by implement-
ing the primary requirements needed for the application of our design for
adaptation approach. We intend to further extend the process engine ac-
cordingly to the future extensions of the approach (e.g., to add the local
adaptation mechanism management).

We conclude this section saying that both the demonstrators that we
are going to describe in this chapter rely on the before-mentioned process
engine. At this point, given the framework supporting and implementing
the design for adaptation approach presented in this dissertation, both
the basic and the extended versions, in the next sections we are going to
describe, to a greater level of detail, the ATLAS demonstrator in section
7.2, and the DeMOCAS demonstrator in section 7.3.

7.2 ATLAS: a world-wide personAlized TraveL As-

siStant

In this section, we introduce ATLAS – a world-wide personAlized TraveL
AssiStant, a demonstrator developed within our framework and showing
how the presented design for adaptation approach supports the develop-
ment, deployment and execution of adaptive service-based systems operat-
ing in dynamic environments. In particular, ATLAS effectively implements
the travel assistant of the motivating scenario of this dissertation. More-
over, it relies on the refinement adaptation mechanism (see chapter 5) to
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effectively deal with the dynamicity and openness of the mobility environ-
ment, thus with the context-aware specialization of the travel assistant.

We emphasize, here, that for the development of ATLAS we wrapped
up real-world mobility services exposed as open APIs. Indeed, we exploit
ATLAS to further discuss and verify (i) how long it takes to wrap up real
services as domain objects, and (ii) how much the automatic refinement
(service selection and composition) affects the execution of the travel as-
sistant.

The rest of the section is organized as follow: in section 7.2.1 we run a
discussion about the specific challenges of the mobility domain. In section
7.2.2 we discuss how ATLAS is organized as a service delivery platform.
Section 7.2.3 is devoted to describe the implementation of ATLAS, while
in section 7.2.4 we provide evaluation results as obtained from the design
and execution of ATLAS.

7.2.1 Mobility Domain Challenges

In this section, we discuss the challenges related to the mobility domain,
which also motivate our work, by providing an analysis on the ecosystem
of mobility services.

As already introduced in section 3.1, where we described the Travel
Assistant scenario, nowadays, in the mobility context, users dispose of a
large offer of mobility services. These services may differ depending on
different aspects, such as the offered functionalities, the targeted users, or
the provider. In particular, there are journey planners (e.g., Rome2Rio,
Google Transit) for finding traveling solutions between two or more given
locations. Then, specific mobility services are those referring to specific
transport modes (e.g., CityBikes 7 focuses exclusively on bike sharing data)
or provided by transport companies: some examples are Flixbus 8, DB
BAHN 9, Trenitalia 10. Moreover, as already discussed, an emerging trend
is that of shared mobility services that are based on the shared use of ve-
hicles, bicycles, or other means (e.g., BlaBlaCar). All these services can
involve or refer both to public and private transportation services. Further-
more, mobility services can offer disparate functionalities (e.g., planning,
7 https://www.citybik.es/ 8 https://www.flixbus.com/
9 https://www.bahn.de/p/view/index.shtml 10 http://www.trenitalia.com/
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booking, ticket payment, seat reservation, check-in and check-out, feedback
evaluation, user profiling, and so on). Some functionalities may be pecu-
liar for specific services and/or require particular devices (i.e., the need for
unlocking a bike from a rack is peculiar for bike-sharing services, and a
smart-card might be needed to do it). In addition, these services are made
available through a large variety of technologies (e.g., web pages, mobile
applications), with different constraints on their availability (e.g., free vs.
pay).

In such a situation, when a user looks for a door-to-door journey plan,
to get travel information as more accurate as possible, she must interact
separately with a set of different services, to exploit the different function-
alities required to accomplish a journey. For instance, if a user wants to
go for a vacation in a country other than the one in which she lives, lets
say from Verona to Paris, she can use, among many, the following set of
services. An inter-modal journey planner (e.g., Rome2Rio) provides a set
of alternatives to reach the country. Even in the best case, alternatives
are made at least by two legs, that is two transport means (e.g. plane and
shuttle). After selecting one option, the user will probably need to search
for the specific services offered by the agencies providing the journey (e.g.,
the plane company and the shuttle company). Now, she must understand
how to manage her trip from home to the airport in Verona, and from the
shuttle terminal to the hotel in Paris. These are more local/city related
transport data. In particular, in Verona the airport is reachable by a ded-
icated shuttle managed by the ATV agency 11, while in Paris a plenty of
local transport services exist (e.g., RATP 12).

Figure 7.2 shows a snapshot of a representative selection in the ecosys-
tem of mobility services. We define two dimensions, as follow:

• On the y-axis we give the geographic coverage, ranging from local to
global. It measures the area covered by the mobility services (e.g.,
city, country, world-wide coverage). For instance, Google Transit is
a global planner, since it can be used for planning all around the
world. ViaggiaTrento 13, instead, is a local planner, since it combines
all the current public transports specifically for the city of Trento, by

11 http://www.atv.verona.it/ 12 http://www.ratp.fr/
13 http://www.smartcommunitylab.it/apps/viaggia-trento/
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Figure 7.2: Overview of Mobility Services.

providing detailed and accurate plan alternatives.

• On the x-axis we give the transport modes coverage, ranging from
single mode to multiple mode. It measures the number of different
transport means handled by mobility services. For instance, services
like Flixbus, e.motion 14 and Uber 15 refer to a single transport mode,
namely bus, bike and car. To the contrary, journey planners tipically
consider different transport modes, and the same is for (local) public
transport company.

Following this classification, we can make several observations about
mobility services. In particular, services dealing with one or a few trans-
portation modes, as well as services having a local coverage for one or a few
cities/countries (i.e., the services closest to the x and y axis in Figure 7.2)
are characterized by a high accuracy of the provided data. To the contrary,

14 http://www.provincia.tn.it/bikesharing 15 https://www.uber.com/
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the more global are the services, the more they tend renounce accuracy.
This can be due to different aspects: for instance, while private companies
own and manage their data, other open mobility services can rely on avail-
able open data and open API, which can be incomplete or not up to date.
If we focus on cities, we can observe that there is a multitude of disparate
local services, which are very specific for one or few transport services and
very accurate, at the same time. However, this implies that, while moving
around and changing their context, the users needs to discover and exploit
the respective services (and applications) in each city.

From this analysis on the mobility domain, we can argue that mobility
services are characterized by gaps and potentialities. Besides the huge
amount of mobility services available up today, it is still missing for the
users the possibility of getting context-aware, accurate and personalized
travel solutions while moving around, without the need of discovering and
using a multitude of different applications.

In this context, we claim that there is no need for yet-another-mobility-
app. Our goal, instead, is to provide a solutions for enhancing mobility
services interoperability through their run-time and context-aware discov-
ery and composition, in order to exploit their potentialities and fill their
gaps. This will allow users to get personalized solutions for their journey,
from the planning phase till the journey execution. This can be done by
leveraging together on the coverage offered by global services and on the
data accuracy of local services, depending on the context and in a complete
transparent way.

The challenges highlighted in this section motivate, among other things,
our research on a design for adaptation approach of adaptive service-based
systems allowing to overcome gaps and heterogeneity among services, inde-
pendently of the domain they belong to. In particular, from our analysis of
the mobility domain, it emerges that organizing and managing the mobility
services, meeting travelers expectations and properly exploiting the avail-
able services, is still an increasingly complex task. This aspect has strongly
supported our choice of focusing on the mobility domain and, particularly,
on the design and implementation of a world-wide travel assistant as the
running scenario of this dissertation.
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7.2.2 ATLAS Platform

In this section, we present how ATLAS, our world-wide personalized travel
assistant [29], has been developed on top of our design for adaptation
framework. ATLAS consists both in (i) a demonstrator showing the sys-
tem’s models and its execution and evolution through automatic run-time
adaptation, and (ii) a Telegram chat-bot, for the interaction with the users.
Furthermore, ATLAS exploits real-world mobility services exposed as open
APIs, which are wrapped as domain objects to be effectively part of the
system. In this section, we introduce how ATLAS is organized as a ser-
vice delivery platform. In section 7.2.3, instead, we show how adaptive
service-based systems, such as the travel assistant, can be realized on top
of it. From a technical perspective, the platform is organized in three main
layers, as shown in Figure 7.3.
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Figure 7.3: Domain Object-based Platform.

The Enablers leverage on our results on the adaptive by design wrap-
ping of (mobility) services, based on the design for adaptation approach
[27, 28] described in chapter 4. Developers can exploit and wrap up as
domain objects the available services in the mobility domain. These ser-
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vices can range from journey planners to public transport services, from
shared mobility services to other mobility services not belonging to the
previous categories. Besides the design of mobility services, enablers al-
low also for their run-time operation. All the details about the execution
and adaptation enablers (see the Platform Enablers layer in Figure 7.3)
have already been provided in chapter 5, section 5.2. In particular, we de-
scribed (i) how the execution enablers perform the execution of the domain
objects processes (i.e., core processes and fragments) during the operation
of service-based applications, and how (ii) the adaptation enablers imple-
ment the adaptation mechanisms and strategies, described in section 5.1
and manage the adaptation needs of applications, arising at run-time.

The Mobility Services layer exposes the functionalities implemented
or facilitated by the Enablers. These services can exploit and/or combine
into value-added services the functionalities of the mobility services previ-
ously wrapped up and made available by the Enablers. In this layer, we can
find services for the user profiling allowing to manage the user preferences.
There are services for the planning, booking and execution of journeys, as
well as services allowing users to monitor, save and get notified about the
scheduled journeys. The key idea is that the platform is open to continuous
extensions with new services, wrapped as domain objects. Their function-
alities can thus be exploited in a transparent way to provide value-added
services to the end-users.

All the platform mobility services can be eventually provided to final
users through a range of multi-channels front-end applications that consti-
tute the Front-end layer. These can be mobile or desktop applications,
and they can be independent or rely on existing services, such as chat-bots
(e.g., Telegram chat-bot).

7.2.3 ATLAS Implementation

As already introduced, ATLAS consists of both a demonstrator and a Tele-
gram chat-bot application. In particular, the demonstrator is based on a
process-engine implemented in-house. This handles the multiple-instance
processes management, the dynamic correlation among processes and the
abstract activity management, which are needed requirements for the appli-
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cation of our techniques. The demonstrator also implements the enablers
described in section 5.2 (e.g., Adaptation Manager, Domain Objects Man-
ager). In this section, with the ATLAS platform in mind, we give more
details on the ATLAS travel assistant , to show how different applications
(i.e., the ATLAS telegram chat-bot) can be realized, and further executed,
on top of the platform.

To realize a world-wide travel assistant able to provide to the users the
proper mobility services in the specific context(s) of their journeys, we se-
lected real-world mobility services exposed as open APIs. We identified
their behavior and functionalities and their input and output data. Fi-
nally, we wrapped them up as domain objects to be stored in the platform
knowledge base. For instance, we wrapped Rome2Rio and Google Tran-
sit as global journey planners. However, to overcome the limitations of
global planners in terms of accuracy, local planners are needed. In our
platform, for instance, we wrapped ViaggiaTrento, as local planner. It can
be exploited for those journey located in Trento, which can also be part
of a wider inter-modal travel solution provided by a global planner, but
for which the global planner does not give enough or accurate information.
Indeed, for long distance travel solutions, probably touching several cities,
global planners are not as accurate as local planners of those cities. Com-
bining the geographical coverage of global planners with the accuracy of
local planners is a concrete example of services interoperability promoted
by our platform. Going on, other open mobility services have been consid-
ered. We mention Travel for London 16 as planner for the city of London,
BlaBlaCar as ridesharing service, CityBikes as bike sharing service apply-
ing to about 400 cities, Trentino Trasporti 17 for the public transportation
in the Trentino region, as examples. Being defined as domain objects, all
these services can now be executed, automatically composed and adapted
by the enablers of the platform.

At the Mobility Services platform level, instead, we can find the Travel
Assistant. It has been defined as a value-added service leveraging on the
services available in the system. In particular, its main features are the
following:

16 https://api.tfl.gov.uk/ 17 http://www.ttesercizio.it/
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1. given a user planning request, it is able to decide between a local or a
global planning service to better handle the request, by analyzing the
source and destination points entered by the user.

2. Given the planners responses, it defines the better way to show this
responses to the user (e.g., a list of travel alternatives, a warning
message). Different data patterns are provided on the basis of different
data format (e.g., XML, JSON) and relevant information. Moreover,
the application allows also the data in the service responses to be
filtered and ordered on the basis of the user preferences (e.g., price,
distance, travel time). Patterns are applied for each used mobility
services and not only for journey planners.

3. Once the user selects a specific solution, the travel assistant is able to
identify the transport means in the legs making the entire solution.
With the information that it gets, it goes vertically to find the proper
service(s) to use (e.g., the ones of the specific transport companies), if
existing in the system. Moreover, these services can refer to different
aspects of the organization of a journey, such as the presentation of
timetables, the booking of tickets, the notification of delays, etc. In
this way, the application can incrementally provide to the user spe-
cific functionalities and context-aware information for his/her journey,
without requiring users to look for and interact with different and in-
dependent applications.

We will see concrete execution examples further on in this section. We
emphasize here that the more (mobility) services are wrapped up and
stored in the system’s knowledge base, the more responsive and accurate
the travel assistant will be.

Finally, among the multi-channel front-ends that can be defined on top
of the platform, we realized the travel assistant as a Telegram chat-bot,
exploiting the open API provided by Telegram. The same travel assistant
might be furnished via a different front-end, too.

A graphical representation of (a portion of) the travel assistant system,
as the domain objects hierarchy arising from the wrapping of mobility
services and the travel assistant design, is given in chapter 4, in Figure 4.3.
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In the rest of this section, instead, we focus on the execution of the travel
assistant, and on its interfaces, both that of the demonstrator and that of
the Telegram chat-bot.

ATLAS Demonstrator Interface. The execution of ATLAS is triggered
by the users interacting with the ATLAS Telegram chat-bot installed on
their smartphone. The use of the chat-bot allows users to interact with ser-
vices that are dynamically selected and composed by the framework, based
on their requests, in a completely transparent way. For this reason, we de-
cided to realize also a demonstrator showing the background execution of
the travel assistant performed through the dynamic specialization of pro-
cesses, via the abstract activities refinement mechanism. In this paragraph,
we show the interface of the ATLAS demonstrator, its main windows and
how it works. Examples of running scenarios as shown on the Telegram
chat-bot users interface, instead, are given in the next paragraph.

First of all, the ATLAS demonstrator is made by two main tabs, namely
the Domain Objects Models tab, in Figure 7.4, and the Runtime Execution
tab, in Figure 7.5.

The Domain Objects Models tab is devoted to show the models of the
adaptive by design services that have been wrapped as domain objects and
stored in the system knowledge base. On this tab, a user can select a
specific service from a provided list (Figure 7.4 left side), that is, its cor-
responding domain object, and inspect the models of its core ingredients,
namely the Core Process, the Provided Fragments, the Domain Knowledge
and the Domain Object Definition. They are all organized on a tab view
(see the bottom side of Figure 7.4), among which the user can easily move
from a construct to another. In particular:

• the Core Process tab shows the APFL model of the domain object’s
core process, with the sequence of all its activities (i.e., input, output,
concrete and abstract activities), the specific used constructs (i.e.,
while loops, switch, if), the annotations labeling the activities (i.e.,
preconditions, effects and goals) and the transitions among them.

• the Provided Fragments tab, which is exactly that shown in Figure
7.4, gives the list of the fragments exposed by the selected domain
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Figure 7.4: ATLAS Demonstrator – Models view.

object. For each fragment it shows both a graphical and a textual rep-
resentation. While the textual model is XML-based, in the graphical
representation of fragments, we use different ways to shape the differ-
ent kinds of activities. In particular, output and input activities are
depicted with outgoing and ongoing messages, respectively. Indeed,
these activities model the I/O communications among the fragment
and its relative core process. Concrete activities are depicted with
solid lines, while abstract activities are depicted with dotted lines.

• the Domain Knowledge tab reports the list of domain properties be-
longing to both the internal and external knowledge of each domain
object. This tab is structured exactly as the Provide Fragments tab.
The only differences are that (i) the textual description gives the XML
representation of the state transition system corresponding to the spe-
cific domain property (i.e., states, transitions, events), and (ii) the
graphical representation shapes a state transition system.

• the Domain Objects Definition tab, eventually, reports the XML-
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based model of the selected domain object, where all its core ingredi-
ents and attributes (e.g., state variables) are specified.

At this point, we can describe the Runtime Execution tab that is, in-
stead, devoted to the execution of service-based systems (i.e., the travel
assistant) developed within our framework. Thinking at the travel assis-

Figure 7.5: ATLAS Demonstrator – Execution view.

tant as running system, the ATLAS demonstrator allows the starting of
the travel assistant, with the button Play as well as its step-by-step execu-
tion, with the button Step, on the top-side toolbar. Once started, it waits
for a user request from an instance of the Telegram chat-bot, in order to
subsequently show its dynamic process execution. The Runtime Execution
tab is organized in such a way that:

• for each running domain object instance in the system, it is possible
to follow its execution and evolution;

• for the specific user of the travel assistant, it is possible to see how
his/her specific travel assistant instance evolves through the dynamic
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establishment of co-relations among domain object instances that dy-
namically interoperate by exchanging fragments among them. In par-
ticular, for each user, different domain objects will be instantiated,
the ones corresponding to the context-aware services providing the
fragments needed to accomplish their specific needs.

Indeed, during the run-time execution of the system, the domain ob-
jects’ hierarchy, defined by the soft dependencies among domain objects,
as emerging at design time (see Figure 4.3 as an example), evolves thanks to
the dynamic inter-operation among domain objects and the domain knowl-
edge extension (see section 5.3 and section 5.3.1, respectively), to which
each domain object might be subject while executing.

Going back to the Runtime Execution tab of the demonstrator, on its
top left corner it provides the list of the Domain Objects Instances currently
running in the system. If an instance is selected, the whole interface is
updated accordingly. More precisely:

• the Correlated Domain Objects area shows all the domain objects
instances to which the selected domain object has a co-relation. A
co-relation between two domain objects is established when a domain
object injects in its core process a fragment provided by another do-
main object, thus transforming their soft dependency into a strong
dependency;

• the Domain Objects Details tab view shows the domain properties in
the domain knowledge of the current domain object, by giving the
state in which they are (in the Domain Knowledge tab). The list of
all the variables making the internal state of the domain object, and
its evolution (in the State Variables tab);

• the Provided Fragments area (top right corner in Figure 7.5) lists the
fragments offered by the current domain object;

• the Process Model area loads the model of the current domain object
core process;

• the Process Execution area, instead, loads the running domain ob-
ject’s core process instance and it shows its dynamic execution via the
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incremental composition of services. The process in execution is dis-
played by green-coloring the executed activities and by highlighting
the (chain of) refinements of abstract activities, with the correspond-
ing injection of fragments compositions, as shown in Figure 7.5.

In chapter 5, we provided an overview on the dynamic adaptation of
fragment-based and context-aware business processes [25, 120], in order
to comprehensively define the adaptation mechanisms and strategies ex-
ploited by our approach. Then, we specified that in the current version of
the approach we deal, in particular, with the abstract activity refinement
mechanism. Moreover, we also described the fragments composition ap-
proach based on AI planning [47]. Essentially, for the automatic resolution
of an adaptation problem, according to [47], this is transformed into a AI
planning problem, so that planning techniques can be used to solve it.

In order to give more details about the refinements of abstract activities,
when these are performed, we realized a window specifically devoted to the
application of the refinement mechanism, allowing the inspection of the
automatic resolution of an adaptation problem. By clicking on an abstract
activity of a running process in the Process Execution area, the window
in Figure 7.6 is opened. On its first tab, the Process/Fragment Activity, it
shows details about the abstract activity currently under refinement, such
as its goal. Then, the window is made by the following other tabs.

In the Activity Specialization Problem tab, in Figure 7.7, the adaptation
problem is specified by a set of fragments and a set of (involved) domain
properties belonging to the external knowledge of the domain object that
is currently executing the refinement.

On the Planning Domain tab, in Figure 7.8, the planning domain is
reported after being translated into a *.smv file specification by the Com-
poser, in order to be given as input to the AI Planner (see the component
diagram in Figure 7.1).

Eventually, the Activity Specialization Result tab, in Figure 7.9, reports
the (composition of) fragments returned by the Planner as result of the
abstract activity refinement process. It is injected in place of the abstract
activity, and its execution allows its goal to be reached.
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Figure 7.6: Abstract Activity Refinement Window.

Figure 7.7: Process Specialization Problem Tab.
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Figure 7.8: Planning Domain Tab.

Figure 7.9: Process Specialization Tab.
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ATLAS Chat-bot Execution. In this paragraph, we show the execution
of two different scenarios, representing two relevant use cases of ATLAS,
from the perspective of the users exploiting the travel assistant in their
daily life. Indeed, as we said before, one of the concrete example of ser-
vices interoperability promoted by the ATLAS demonstrator consists in
combining the geographical coverage of global planners with the accuracy
of local planners. In other words, while looking for context-aware services
to be dynamically exploited, after a journey planning request from a user,
the travel assistant is able to decide between a local or a global planning
service to better handle the request. For this reason, we show how AT-
LAS runs in the Telegram chat-bot interface, both in a situation of a local
journey organization, and in a situation of a global journey organization.
The chain of incremental refinements that is dynamically set up from the
execution of the following scenarios, is similar to that given in Figure 5.4
of section 5.3.

Examples of ATLAS use cases, whose execution can be observed also
within the demonstrator, are the following.

Local journey organization use case. Sara lives in Trento, Italy, and
she wants to find her way to reach the Christmas markets located in Piazza
Fiera, not so far from her departure place, which is the public swimming
pool in via Fogazzaro. In Figure 7.10, we show the relevant screenshots
of the ATLAS chat-bot running on her smartphone’s display, as the user
interface showing both how Sara can interact with ATLAS and how the
information are displayed. The chat-bot allows Sara to enter her departure
and destination points (see the screenshot on the left side in Figure 7.10).
Being both places located in the same city, Trento, the travel assistant un-
derstand that a local planning would be more appropriate for the specific
user request. Thus, it dynamically finds and selects the Viaggia Trento
journey planner, a local planner for the city of Trento exposing a frag-
ment for the journey planning execution. The journey planner’s response
if further handled and parsed by the Data Viewer domain object devoted
to the visualization of information on the chat-bot, which has been previ-
ously described in chapter 4. The result is shown to Sara as in the central
screenshot in Figure 7.10. Since in the request she opted for a healthy solu-
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Figure 7.10: Screenshots of the ATLAS chat-bot – Local Journey Organization.

tion, the Viaggia Trento journey planner replies with the healthier solution
available, which is the one provided by a bike-sharing service, whose racks
are close to both her source and destination places. At this point, Sara
would like to know if there are available bikes to be used. To this aim,
the travel assistant continues with its execution and it identifies the bike-
sharing service available in Trento, namely e-motion. Since this service has
been wrapped as domain object and, thus, it is available in the system, the
travel assistant selects its fragment whose execution allows the system to
get information about the available bikes at the closest bike-sharing racks.
Again, the result is shown by the chat-bot on the smartphone of Sara, as in
the right-side screenshot in Figure 7.10. Sara knows, now, that 3 bikes over
11 are still available at the rack close to the swimming pool (first element
in the result list). The e-motion bike-sharing service does not allow for the
booking of bikes, so that the execution of ATLAS stops here. In summary,
for her specific request, Sara transparently interacted with different mo-
bility services that have been dynamically selected and composed for her
specific request, taking into account her specific context. This is a typical
scenario of an execution of ATLAS in the local case.
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Global journey organization use case. The second execution example,
instead, refers to Paolo. He must organize his working journey from Trento
to Torino and he also is a user of ATLAS. The relevant screenshots of his
journey organization are reported in Figure 7.11.

Figure 7.11: Screenshots of the ATLAS chat-bot – Global Journey Organization.

He starts by entering his departure and destination places, as in the
screenshot on the left side. Being Trento and Torino two different cities,
the travel assistant opts for a global planning solution. It finds and se-
lects a fragment for planning a journey exposed by the Rome2Rio global
journey planner. The found travel alternatives are shown to Paolo as in
the central screenshot in Figure 7.11. Different alternatives are available
(e.g., rideshare, bus, train, etc). In this example, we can see how ATLAS
displays relevant details for each solution, such as the cost, the duration,
the distance and the number of changes. Moreover, it also allows these
solution to be differently ordered (e.g., by price, by cost, etc), by using the
buttons on top of the chat-bot keyboard. At this point, Paolo selects the
first alternative, namely the rideshare one, which is also the less expensive.
In particular, the ride-sharing solution suggested by Rome2Rio is provided
by the BlaBlaCar ride-sharing service. In order to get more information
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about the BlaBlaCar travel alternatives and their details (e.g., departure
time, available seats, driver contact, etc), the travel assistant continues its
execution. It dynamically finds and selects the fragment exposed by the
BlaBlaCar service, whose corresponding domain object exists in the sys-
tem knowledge base. Its execution provides detailed information that are
further shown to Paolo, as in the right-side screenshot in Figure 7.11. We
highlight here that, to use the BlaBlaCar service, it is not required that
Paolo has the BlaBlaCar mobile application installed on his smartphone.
Instead, to continue with the booking of the ride-share solution, it is re-
quired that he is subscribed to the service. To sum up, also Paolo has
been able to plan his trip to Torino, by interacting with different mobility
services, specifically selected for his initial request.

In conclusion, these execution examples exhibit two important aspects
of our approach. Firstly, they show its bottom-up nature, where mobility
services functionalities go through the domain objects hierarchy (refer to
Figure 4.3) till the user process where they are executed. Secondly, this
happens in a completely transparent way for the user that interacts with
only one application, the ATLAS chat-bot.

7.2.4 ATLAS Evaluation

To evaluate ATLAS, both in terms of effectiveness and efficiency, we have
run a set of experiments. In this section we describe their design and
we discuss the collected results. The tests are done on real-world prob-
lem that were generated by randomly choosing an origin and a destination
points while running ATLAS. The specification of ATLAS used to evalu-
ate the platform contains 14 domain object models, 17 fragment models
and 12 types of domain properties. Domain properties are high-level rep-
resentations of the domain concepts, and they are used to evaluate the
conditions under which each fragment, provided by a domain object, can
be exploited. We ran ATLAS using a dual-core CPU running at 2.7GHz,
with 8Gb memory. To show its feasibility, we evaluate the following as-
pects:

• How long it takes to wrap up real services as domain objects;
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• How much automatic refinement (service selection and composition)
affects the execution of the travel assistant.

To answer to the first point, and based on our experience acquired dur-
ing the development of ATLAS, we can argue the following. To wrap a real
service as a domain object, the developer needs (i) to master the domain
objects modeling notation and (ii) to understand the service behavior, its
functionalities, its input/output data format and how to query it. Wrap-
ping time clearly changes between experienced and non-expert developers.
From our analysis, it ranges from 4 to 6 hours, considering average com-
plex services. Moreover, it is also relevant to claim that this activity is
done una tantum: after its wrapping, the service is seamlessly part of the
framework and exploited for automatic composition and refinement.

To answer to the second point, we collected both the adaptation and
mobility services execution statistics, to understand how long they take, on
average, to be executed. To evaluate the automatic refinement, we carried
out an experiment in which we considered 10 runs of ATLAS handling var-
ious end-users’ requests. We collected adaptation data such as the number
of adaptation cases, their complexity and the time required to generate
adaptation solutions. For each run, more than 150 refinement cases were
generated. Figure 7.12 left side shows the distribution of problem com-
plexity considering the 10 runs. The complexity of an adaptation problem
is calculated as the total amount of transitions in the state transition sys-
tems representations of the domain properties and fragments present in
the problem. For simplicity, in the graph we aggregated the problem com-
plexities in ranges of 20. The majority of the problems have a complexity
in-between 0 and 19 transitions. A significant number of them have a com-
plexity in-between 40 and 59 transitions, while the most complex problems
have a complexity ranging from 80 to 100 transitions. Notice that the oc-
currence of complex problems is relatively rare (in this real-world battery
of tests). Figure 7.12 right side shows the percentage of refinement prob-
lems solved within a certain time. We can see that, for all the runs, 93% of
problems are solved within 0.2 seconds. Only 3% of the problems require
more than 0.5 seconds to be solved, and the worst case is anyhow below
1.5 seconds.
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Figure 7.12: (Left side) Distribution of Problems Complexity. (Right side) Percentage of
problems solved within time t.

To measure how much automatic refinement influences the execution of
ATLAS, we compared the data about the time required for adaptation with
the response time of real-world services wrapped in ATLAS. Figure 7.13
left side relates the (average) time required to solve a composition problem
to the problem complexity. The average time is computed considering in
the 10 runs all the refinement problems having the same complexity. As
expected, problems with higher number of transitions (and hence the most
complex planning domain) take more planning time than problem with less
complexity. Figure 7.13 right side, instead, relates to the (average) response
time of (a subset of) real mobility services, which are part of ATLAS. We
can notice that, in the worst case, the adaptation requires a time close
to 1.5 seconds, while the services response time ranges from 0.23 to 3.20
seconds. Moreover, the adaptation takes more time for the most complex
problems that, however, are the less frequent to be executed. We can
argue that the automatic refinement responsiveness is equivalent to that of
mobility services. In conclusion, these results demonstrate the effectiveness
and the efficiency of our approach when applied to a real-world complex
scenario.
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7.3 DeMOCAS: Domain Objects for Service-based

Collective Adaptive Systems

In this section, we introduce DeMOCAS – Domain Objects for Service-
based Collective Adaptive Systems. It is a simulator showing how the de-
sign for adaptation approach, extended to deal with ensembles made by
collaborative and interacting entities (i.e., domain objects), supports the
development and execution of collective adaptive systems operating in dy-
namic environments. We further discuss the effectiveness of the approach
when applied to smart cities applications like the “Urban Mobility Sys-
tem”. Indeed, for the implementation and evaluation of DeMOCAS, we
designed the UMS in terms of domain objects and we simulated its exe-
cution through the dynamic formation of ensembles and the application
of collective adaptations, when issues affecting an ensembles or the whole
system arise.

Differently than what we did for the design of the travel assistant in
ATLAS, in DeMOCAS we do not deal with real services. However, even
if we defined domain objects representing non-real world mobility services,
we designed them in a realistic manner, so that to realistically simulate the
UMS behavior, as it is in a real city. For its execution, DeMOCAS lever-
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ages on both the advanced techniques for dynamic and incremental service
composition [128] (see chapter 5) and the collective adaptation algorithm
[30] (see chapter 6), to effectively deal with changes occurring at different
levels in the system.

While in chapter 6 we evaluated the collective adaptation algorithm in
terms of its feasibility and scalability when managing real-sized applica-
tions, we exploit DeMOCAS to further discuss and verify the usability and
scalability of the exploited adaptation mechanisms. Indeed, since adap-
tation is relevant for the execution of systems, by firmly affecting it, we
intend to prove that its application does not degrade the performance of
systems.

The rest of the section is organized as follow: in section 7.3.1 we deeply
describe the UMS scenario, with examples about its execution and col-
lective adaptation. In section 7.3.2 we provide an overview on the design
of the UMS in terms of domain objects. Section 7.3.3 is devoted to de-
scribe the implementation of DeMOCAS, while in section 7.3.4 we provide
evaluation results as obtained by running DeMOCAS.

7.3.1 Evaluation Scenario: the Urban Mobility System

In this section, we recall and further detail the Urban Mobility System sce-
nario, previously described in chapter 6, which has been modeled and can
be executed within DeMOCAS. We describe an overview of the system,
together with examples of its execution, especially in the case in which a
collective adaptation must be performed. As last, we focus on a portion
of the entire system, the one related to the Flexibus transportation mean,
since even though it is quite simple, it provides sufficient complexity to
represent the concepts of ensembles, roles and collective behavior. A (par-
tial) overview on the adaptive by design model of the UMS, in terms of
domain objects and domain properties, is further given in section 7.3.2.

The UMS scenario is characterized by the active involvement of the citi-
zens in the city life. They proactively contribute, by offering their capabili-
ties, expertise and resources that may be deployed in different processes at
the city level, for the benefit of the whole community. At the same time,
supporting citizens mobility is a priority for municipalities. Indeed, the
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goal of this scenario consists in exploiting in a synergistic manner the het-
erogeneous city transport services, while providing accurate, real-time, and
customized mobility services to citizens. The system helps citizens to plan
and execute a journey as well as to deal with context changes that may
affect a journey with the introduction of alternatives or different planning
solutions. In particular, the system provides multi-modal, collaborative and
customized tasks.

In the following we briefly report the UMS characterization. The UMS
integrates three means of transport: regular bus, flexible bus (Flexibus) and
car pooling. As known, regular bus services deal with predefined routes
and timetables supported by a number of buses. Flexibus, instead, is a
modern transportation service, that combines the features of taxi and reg-
ular bus services. A Flexibus system manages on-demand routes defined as
a network of stops (pickup points) and provides to passengers transporta-
tion between any of these points. At last, car pooling provides integration
between independent drivers and passengers. The goal of the UMS is to
provide the integration of these services to the passengers and to support
them to collaboratively addressing the context changes affecting their jour-
neys. Different actors are involved in such a scenario: there are citizens
representing the main users of the whole system, acting as passengers of
the different transportation means. Then there is a manager (aka company,
e.g., the Flexibus Company) for each transport service that is devoted to
the management of the service itself and that acts as a mediators between
passengers, employees of the company, routes covered by the means, third
party services on which it relies on, and so on. Drivers are also actively
involved by dynamically interacting both with the system and with the
passengers for giving and receiving updates on their assigned routes. At
last, the UMS represents the supervisor actor that provides integration
between all the involved actors (see Figure 7.14).

In the rest of this section, we consider only the Flexibus transportation
mean. Although simple, this portion of the UMS scenario is sufficient to
show the relationships between the involved entities, their dynamic inter-
connections and cooperation. Within the current scenario we can distin-
guish the following set of entities:
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• User. The user entity models a real citizen that uses the UMS to
plan her journey. The UMS will support her during the journey orga-
nization (e.g., journey planning, tickets booking), through its execu-
tion (e.g., reaching flexibus pickup points, monitoring transportation
means).

• Flexibus Employee. The Flexibus Employee entity models the system’s
users representing the employees of the flexibus company. They can
play different roles; in this version of the scenario we defined the role
of the flexibus driver.

• Urban Mobility System. This entity represents the mediator between
system’s users and transportation means (e.g., flexibus) and it pro-
vides their integration. It exposes to the passengers the available tools
for planning multi-modal trips, and it allows passengers to establish
connections with the entities related to her plan, in order to interact
with them for defining, executing and finalizing the plan. It also man-
ages integrated notification and support system to pursue collective
adaptation objectives.

• Trip Organization. This entity concretely organizes a multi-modal
trip on the basis of the plan chosen by the passenger between a set of
provided alternatives. When the plan is defined, it interacts with the
transportation companies involved in the plan to accomplish all the
organizational tasks (e.g., booking, ticket payments, seat reservation).

• Multi-modal Planner. This entity is devoted to provide multi-modal
plans based on users requirements.

• Flexibus Company. This entity implements the logic of flexibuses or-
ganization, and represents the interface with the service users. It
collects booking requests from the passengers, manages the creation
of routes and it assigns drivers to them.

• Route Passenger. This entity represents the passenger of a flexibus
route. It specifies the behavior that a user must implement when she
becomes passenger of a flexibus.

195



• Flexibus Driver. This entity has the goal to perform his assigned route
by covering all the pickup points composing it, while respecting the
passengers needs, such as time requirements. He is in touch with the
Flexibus Company (e.g., to get the route), with the Route Manager
(e.g., to get routes info, such as the list of pickup points and the list
of passengers, the route updates) and with the passengers (e.g., to
communicate with them in case of delay).

• Route Manager. It has the goal to manage specific routes, each com-
posed by a set of pickup points, a set of passengers and a Flexibus
Driver.

Moreover, for adaptation purposes, each of these entities is able to in-
teract with the other entities which it has relations with, to notify, solve
or manage problems, as well as to adapt their own processes in order to
apply adaptation solutions.

UMS Execution. Given the involved entities, we briefly describe how
they can interact and which relationships can potentially be established
among them, during the execution of the UMS.

First of all a user interacts with the system to plan a journey. The
system provides the right functionalities to define multi-modal alternatives
and to organize trips. To plan trips, the UMS relies on functionalities
exposed by entities in the system offering planning functionalities, if any;
in this scenario this is the case of the Multi-Modal Planner (MMP) that is
able to plan trips by considering all the transportation means covering the
area in which the trip has to be executed. Moreover, the MMP provides
all the solutions applying to the user request. Eventually, the solutions
are forwarded to the user that chooses her preferred solution and asks the
UMS to proceed with the trip organization. To accomplish this task, the
UMS relies on functionalities offered by other entities in the system dealing
with the management of journeys, spanning from the inizialization phase
to the post execution phase. The Trip Organization entity receives the
multi-modal alternative selected by the user. On the basis of the transport
means involved in it, the Trip Organization dynamically establish relations
with the entities providing the needed functionalities (e.g., booking, ticket
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payments, registration and login) and it forwards to the user the knowledge
to interact with them.

For instance, we consider a simple example where the solution involves
only the flexibus transport mean. The Flexibus Company is the entity
acting as interface of the whole flexibus system. Thus, through the Trip
Organization, the user establishes a new relation with the Flexibus Com-
pany which allows her to login or register to the system, to book for the
trip and pay the ticket on-line if possible. When all the details of the trip
are defined and approved, the user becomes a Route Passenger, since she is
assigned to a specific flexibus route. This means that she will interact with
the Route Passenger entity, which provides all the facilities to check-in at
the pickup point, check-in on the flexibus, communicate with the driver
and the other passengers if needed, and so on. The Route Manager entity,
instead, is devoted to the creation and management of flexibus routes. It
provides functionalities both to the Flexibus Company, in order to create
new routes and pickup points on the basis of the users bookings, and to
the Route Passenger in order to check-in on routes. At last, the employees
of the flexibus company (Flexibus Driver) are also users of the system.
They interact with the Flexibus Company entity to be assigned to specific
routes and, for each route they must travel, they interact with the Route
Manager to update it and to be up to date about the route execution. We
refer to section 7.3.2 for an overview on the domain objects modeling the
just mentioned entities and the soft dependencies among them.

UMS Ensembles. As introduced in chapter 6, to allow system entities
to collectively adapt, dealing with adaptation needs that can be raised
both by the environment and by the entities themselves, the domain ob-
jects model has been extended with specific constructs. A key concept are
ensembles, that are modeled over the dynamic network of domain objects,
as groups of domain objects playing different roles. Although autonomous
in their execution, domain objects belonging to the same ensemble share
common goals and might need to collectively handle run-time adaptation
problems. Indeed, in dynamic contexts such as that of the UMS, isolated
entity self-adaptation is not effective. We can imagine what happens if
a passenger books a trip with a flexibus and then silently decides not to
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travel. It is likely to cause unnecessary delay for the route (e.g. the bus
will have a redundant stop) and raise the cost of the trip for the remaining
passengers. Even more serious consequences arise if a bus gets damaged:
isolated adaptation by the bus driver could totally break the passengers
travel plans.

In adaptive systems with collective behavior approaches for collective
adaptation are therefore needed to allow (i) multiple entities to collectively
adapt with (ii) negotiations to decide which collective changes are best.
Moreover, a relevant challenge refers to which parts of the system should
be engaged in an adaptation. Indeed, solutions for the same problem may
be generated at different levels.

Example. For instance, a passengers delay may be resolved in the scope
of a flexibus route, by re-planning the route, or in the wider scope of the
flexibus company, with the engagement of other routes, or even in the scope
of the whole UMS, with the engagement of other means of transportation
such as a car pool.

The hierarchical nature of an UMS opens up all these alternative op-
tions. Within our scenario, we can identify several hierarchical levels of
abstraction that operate at different scales in time and space, as in Figure
7.14. A flexibus route combines passengers with a driver, a Flexibus com-
pany combines flexibus routes, and an UMS combines a Flexibus company
and other means of transportation. The higher the level of abstraction,
the wider the scope of adaptation.

UMS Collective Adaptation. In this paragraph, we describe a realis-
tic running scenario, by adding examples about the typical challenges of
collective adaptive systems. In turn, it shows how entities can collectively
solve problems more efficiently with respect to the case in which each entity
adapts by itself.

Let consider a flexibus user that has already caught the flexibus that is,
she has officially joint the collective made by the flexibus driver, the flexibus
route and all the passengers. Moreover, suppose that two passengers are
already on the flexibus, while two other, namely John and Mary, are waiting
at different pick-up points on the flexibus route. As we said before, entities,

198



Figure 7.14: Urban Mobility System: examples of ensembles (with dotted lines).

and thus collectives, operate in dynamic environment, whose evolution may
affect their behaviors.

Example. For instance, suppose that, in our scenario, a road on the route
of the flexibus gets interrupted, because of an accident. This is the case in
which an unpredictable situation affects different entities (e.g., the entities
belonging to the collective just mentioned). In this case, the flexibus driver
may need to find an alternative route and this can be longer that the current
one, thus causing to the passengers on board to be late to their destinations.
Moreover, it could result difficult or too expensive in terms of time and
money to reach the passengers which are waiting at the pick-up points; at
the same time, they also need to find a way to move and terminate their
journeys in both cases in which the flexibus can reach them but late or the
flexibus cannot reach them at all.

This situation shows how an unpredictable event, as those occurring
daily in big cities, can cause a chain of adaptation needs that must be
managed. In the following we give an example of collective adaptation
dynamically defined for managing the whole situation by ensuring as little
effort and inconvenience as possible for the end users.

First of all, as soon as the flexibus driver notices the interrupted road,
he notifies the flexibus manager about this problem. At this point, two

199



main situations can occur:

• the flexibus manager, by interacting with the route manager, can find
an alternative route for the flexibus, which comprises the pick-up
points where John and Mary are respectively waiting. Moreover, this
solution requires not much additional time and we suppose that the
passengers on board agree with it;

• the flexibus manager is not able to solve the problem, since every
possible solution results to be too expensive in terms of time and/or
money both for the flexibus company and for the passengers on board,
which indeed do not agree with them. In this latter case, the flexibus
manager can only report the problem to the UMS.

We can notice how, in both cases, the final decision is made by a col-
lective interaction among the involved entities (e.g., on board passengers,
waiting passengers). In any case, the final adaptation of each entity’s be-
havior is collectively defined. Going back to the collective scenario, suppose
that the UMS intervention is needed. It is notified about the issue by the
flexibus manager. Since it is located at the root of the hierarchy, it has
a wider view on the whole system, thus it knows about the availability of
different transportation means (e.g., car pool), which can be involved in
the issue’s resolution.

Example. For instance, suppose that a car pooling having the same des-
tination of the flexibus is already running, and it is made by the driver
and a passenger, Lisa. It represents another example of collective. The
car pooling route passes not so far from where John and Mary are wait-
ing for the flexibus. A possible solution that the UMS can propose is to
switch John and Mary on the car pooling collective, while leaving the flex-
ibus manager to re-plan a flexibus route to the destination, according to
only the driver and the on board passengers of the flexibus. However, this
solution can cause both to Lisa, to the car pooling driver and to John and
Mary a greater investment of time. Thus, in order to make this solution
suitable, an agreement has to be find between all the involved users. This
is the case in which a collective interaction starts, where the UMS acts as
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an intermediary entity asking for the acceptance of the alternative solu-
tion to the users. Supposing that the alternative solution fits with all the
users requirements (e.g., in terms of arrival time) and a final agreement is
found, the collective adaptation is performed. Eventually, John and Mary
will share the car pooling with Lisa, while the flexibus passengers will reach
the destination by following a different route. Moreover, a reimbursement
must be managed for John and Mary, if they already paid for the flexibus.

In conclusion, this scenario represents just one of many situation in
which an unpredictable event affects the execution of collective processes,
thus triggering collective adaptations.

7.3.2 Adaptive by Design Urban Mobility System

In this section, we give a (partial) overview of the design of the UMS just
described. The system is modeled through a set of domain objects repre-
senting the above-mentioned system’s entities and implementing different
behavior, described by domain properties.

In Figure 7.16 we report a portion of the UMS model, with the soft
dependencies among domain objects. The Urban Mobility System represent
the interface with the users. It can partially define the functionality for
the multi-modal planning of trips. Different entities can join the system
and publish different planning procedures. At run-time, when the user
needs and preferences are known (e.g. preferred transportation mean), the
Urban Mobility System will use the fragments offered by the suitable plan-
ners to specialize its abstract activity and to eventually provide possible
alternatives to the user. In this way, the Urban Mobility System will dynami-
cally interact with the other domain objects in Figure 7.16 to manage the
organization and execution of the user trip, based on her selected travel
alternative.

As stated in chapter 4, the dynamic features offered by the framework
rely on a set of concepts, describing the operational environment, on which
each domain object has a partial view (e.g. flexibus trip, route passenger
status, handle route). We give some examples in Figure 7.15. Consider
for instance the domain property Route passenger status in Figure 7.15 that
models the typical daily trip of a citizen using the flexibus mobility service
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Figure 7.15: Domain properties modeled as STS.

offered by the UMS. The journey of the user needs to be defined in all its
details (PASSENGER DETAILS DEFINED), than the user reaches the pick up point
(PICK-UP POINT REACHED) and she waits for the arrival of the flexibus (FLEXIBUS
ARRIVED). During the journey she is in the PASSENGER CHECKED-IN status (this is
used to model the fact that the user caught the flexibus) and she eventually
reaches the destination (DESTINATION REACHED).

We recall here that activities in domain objects processes and frag-
ments will be annotated with goals, preconditions and effects defined on
top of domain properties. These annotations will drive the dynamic ser-
vices selection and composition, enabling a run-time chain of refinements,
as discussed in chapter 5.

The resulting adaptive system is a dynamic network of domain objects.
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We can see in Figure 7.16 how soft dependencies are established between a
domain object and all those domain objects in the system whose provided
functionality (internal domain knowledge) matches with one of its required
behaviors (domain property in its external domain knowledge). During the
system execution, a soft dependency between two domain objects becomes
a strong dependency if they inter-operate by injecting and executing a
fragment.

Furthermore, in our approach based on the extended domain objects
model presented in chapter 6, a role is modeled as a domain object, with
its internal behavior and its exposed fragments modeling the operation of
participating entities in the scope of the ensemble to which the role be-
longs to. For instance, in Figure 7.16, the domain objects modeling roles
are depicted in grey (e.g., Flexibus Company, Route Passenger, Flexibus
Driver, Route Manager). Besides, each role specifies, among its fragments,
the fragment (in blue in Figure 7.16) that allows a domain object to adopt
that role, through a specialization process. More specifically, when a do-
main object refines an abstract activity while executing its process by using
this kind of fragment, this specialization signs the entrance of the domain
object into an ensemble by playing that role (e.g., the create route fragment
in the Route Manager domain object allows the Urban Mobility System
domain object to play the role of Route Manager in a Route Ensemble).

Finally, to enable collective adaptation, each domain object implements
a set of collective adaptation solvers, as well as a set of collective adapta-
tion handlers, as specified in chapter 6. We recall that solvers model the
ability of a domain object to handle one or more issues. Since the environ-
ment changes frequently and unpredictably, the system requires constant
monitoring. Handlers are used to capture issues, during the nominal exe-
cution of a domain object, and to trigger the appropriate solver. Moreover,
each handler refers to a finite scope in the process of a domain object. We
refer to chapter 6 for examples of solvers and handlers in the context of
the UMS.
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Figure 7.16: Portion of UMS with soft dependencies.
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7.3.3 DeMOCAS Implementation

The design for adaptation framework has been implemented as depicted in
Figure 7.1. In particular, the Figure distinguishes, by green-coloring them,
the components referring to the modeling and execution of CAS. These
components are the Collective Adaptation Manager, the Ensembles Man-
ager, the Ensembles Models and the Ensembles Repository, implementing
the collective adaptation approach and whose functions have been widely
discussed both in chapter 6 and in this chapter.

These components are all exploited by DeMOCAS for the design, execu-
tion and collective adaptation of the UMS. Indeed, by running DeMOCAS
it is possible to (i) follow the normal behavior of the UMS; (ii) inspect in
real time the process execution of each involved domain object, together
with the evolution of its domain properties; (iii) inspect the dynamic en-
sembles formation and their life-cycle and, finally, (iv) trigger issues in
order to inspect the application of collective adaptations solutions.

The following paragraph is devoted to describe the main interface of
DeMOCAS, how it is organized and how it is connected with the before-
mentioned functionalities.

DeMOCAS Interface. In this section we describe, from an high level
point of view, the functioning of DeMOCAS, by highlighting and describing
its main functionalities. In general terms, DeMOCAS starts by loading
and reading a scenario, such as the UMS, defined in a *.xml file and it
interprets it, by reading all the scenario related artefacts (e.g., domain
objects, fragments, processes) types and instances with the corresponding
properties (e.g., preferences in the case of users domain objects) based on
their types. Figure 7.17 shows the main window of the demonstrator. In
particular, the upper side of the window displays a list of domain objects
instances 18 (e.g., User 1 represents the currently running user) and their
position on the map. The lower side, instead, displays both the process
model and the process execution for the current running instance, with
all the corresponding information, such as, domain object instances of the

18 In the ALLOW Ensembles EU project, in whose context the DeMOCAS Demonstrator has been
developed, the domain objects have been used to model the so-called cells. For this reason on the
screenshots of the demonstrator interface you can find the Cell term. In this dissertation we use the term
domain objects, without loosing of generality, since cells are modeled as domain objects.
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Figure 7.17: DeMOCAS GUI - Main Window.
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same type, correlated domain objects and domain object details.

The main window of DeMOCAS allows users to interact with the demon-
strator and follow the run-time execution of the loaded scenario. In detail,
it is organized as listed in the following. The numbers in the list correspond
to the numbers labeling the screenshot in Figure 7.17.

1. Toolbar: it contains the buttons for the management of the scenario
execution, namely:

• Play: it allows users to start and execute the current scenario.
In this case the demonstrator calls the Process Engine which is in
charge of executing the domain objects processes.

• Step: it is used to force the Process Engine to execute the scenario’s
processes step by step. This allows DeMOCAS users to analyze
and inspect the run-time execution.

• Previous and Next: they allow users to navigate through do-
main objects instances and update the interface accordingly.

2. Cell Instances: it lists the domain objects instances. If an instance
is selected, the interface is updated accordingly (e.g., by loading the
corresponding process model, the process instance, its provided frag-
ments and its correlated domain objects). The Map in the center of
the interface will highlight the current position of the selected domain
object instance.

3. Ensembles: this tab allows users to select among the different avail-
able ensembles from the list, by also highlighting their members on
the map.

4. Cell instances: this area displays all the domain objects instances
of the domain object model currently selected (see point 2).

5. Process Model: this area shows the process model of the current
domain object instance. In the figure we can see the abstract activity
UMS CalculateTripAlternatives that will be refined during the run-time
execution of the process.
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6. Cell models: it allows the selection of a domain object model from
a drop down list and the visualization of its corresponding process
model.

7. Provided fragments: here the provided fragments of the current
domain object are shown.

8. Correlated cells: when a domain object communicates and ex-
changes knowledge with other domain objects a correlation among
them is created. All these correlations are listed in this area of the
interface.

9. Process execution: The interface shows the process instance in ex-
ecution, by green-coloring the executed activities, for each process in-
stance. If the process instance contains abstract activities (represented
with dotted lines), they are refined at run-time by using fragments pro-
vided by other domain objects. The refinement is graphically shown
by the injection of the fragments composition into the abstract activ-
ity, as in the case of the UMS CalculateTripAlternatives activity in Figure
7.17.

10. Cell details: it is a view tab containing information about the current
running domain objects. In particular, the following tabs are showed:

• Details: it contains the general details about a domain object
instance (e.g., instance name, process name).

• Context: it contains the current knowledge values for the domain
object instance, which evolves during the execution time.

• Monitor: it contains the monitors (i.e., process scopes with rel-
ative handlers) defined in a domain object process, if any.

• More details button: for special domain objects, like those
modeling users, there are a lot of information that the demon-
strator’s users can verify and change.

11. Ensemble members: if the current domain object belongs to an
ensemble, the other ensemble members are listed in this area.

208



The bottom part of the main window relates to the execution of do-
main objects processes, through their dynamic adaptation, specifically per-
formed via the application of the refinement mechanism. For the CAS
execution, DeMOCAS behaves exactly as stated for ATLAS, in its Run-
time Execution tab, described in section 7.2.3. In the following paragraph,
instead, we focus on the Collective Adaptation Manager interface.

Collective Adaptation. As described in chapter 6, during the execution
of an ensemble, each role can produce issues and can take care of issues
produced by others (i.e., issue solver). Issues generally correspond to dif-
ferent extraordinary situations that can happen to a role and that can be
reported to others. For each issue instance an issue communication is cre-
ated and it is used to send an issue to partners that are supposed to resolve
it. While the issue communication is a way to propagate resolution activ-
ities between partners, the issue resolution corresponds to the high-level
model of internal elaboration being done by role instances. When an issue
is raised, each role instance in an ensemble may resolve it locally or send
one or a few issues to the other partners as a part of resolution procedure.
This procedure is represented as a tree (i.e., issue resolution tree) where
nodes are issue resolutions or issue communications, the root node is an
issue resolution, leaves are issue resolutions, all children of an issue resolu-
tion are issue communications, and all children of an issue communication
are issue resolutions.

One of the added values of DeMOCAS, with respect to ATLAS, is the
implementation of the Collective Adaptation Manager component, in the
component diagram of Figure 7.1. It deals with the resolution of dynam-
ically arising issues, by triggering the collective adaptation algorithm and
managing the communications among the involved domain objects. The
graphical interface of the Collective Adaptation Manager is reported in
Figure 7.18. It is composed of two parts illustrating the issue resolution
procedure in an ensemble. Figure 7.18 depicts a screenshot of the overall
window.

209



Figure 7.18: Graphical Interface of the Collective Adaptation Manager.

The left side shows the list of issue resolution managed by the Collective
Adaptation Manager with their information on the problem ID, the Role
involved, the Issue Type, the Status of the current issue and in which
Ensemble it is resolved.

The right side, instead, shows the issue resolution tree derived from
the collective adaptation algorithm. Indeed, the issue resolution process
generates a resolution tree, modeling all possible solutions for a given issue,
over which the best solution is selected. The tree depicted in Figure 7.18
shows the role from which the issue has been triggered and all the sub-
trees generated during the resolution. Each sub-tree represents a possible
solution (i.e., solver) for the initial issue triggered. When an AND node is
generated, it means that a specific solution has triggered extra issues to
be solved. Instead, when an OR node is generated, it means alternative
solutions are applicable for the same issue. This is the case in which we
exploit the multi-criteria ranking approach, based on analytic hierarchy
process (AHP) [158], to select the best alternative.

7.3.4 DeMOCAS Evaluation

DeMOCAS exploits the modeling approach described in this dissertation,
and further extended to deal with CAS, as described in chapter 6. Adapt-

210



ability and context-awareness are key embedded characteristics of the tar-
geted systems. Moreover, with DeMOCAS we can (i) simulate the UMS
behavior (citizens, drivers, managers of mobility resources), (ii) run the
execution and adaptation of service-based processes attached to domain
objects in the UMS system and (iii) inspect in real time the execution
state of the whole system (domain object instances, current state of their
processes and domain properties).

The specification of the UMS we used to evaluate our approach, whose
overview is reported in section 7.3.1, contains 19 domain object models,
37 fragment models and 17 types of domain properties. We evaluated our
techniques using a dual-core CPU running at 2.7GHz, with 8Gb memory.
We carried out an experiment in which we run the demonstrator, simulating
the operation of the UMS, and we collected the execution and adaptation
statistics such as the number of adaptation cases, the complexity of each
adaptation problem and the time required to generate an adaptation solu-
tion. We considered 10 runs of the system, each having 32 User instances
with different preferences, transport needs and itineraries. For each run,
more than 400 refinement cases were generated. Figure 7.19 shows the
distribution of problem complexity considering the 10 runs.

The complexity of a problem is calculated as the total amount of tran-
sitions in domain properties and fragments present in the problem. For
simplicity in the graph we aggregated the problem complexities in ranges
of 5. That is, the bar with complexity 5 contains all the problems whose
complexity is included in the range [1, 5], and so on. For most problems
(89%) the complexity is below 50 transitions, with 2 to 4 fragments and 1
to 4 domain properties in the problem scope. The most complex problems
(around 3%) have a complexity of 75 transitions, with 7 fragments and 7
domain properties.

Figure 7.20 shows the percentage of refinement problems solved within
a certain time. We can see that, for all the runs, 89% of problems are
solved within 0.2 seconds. Only 3% of the problems require more than 0.5
seconds to be solved, and the worst case is anyhow below 0.9 seconds.

Finally, Figure 7.21 relates the (average) time required to solve a com-
position problem to the problem complexity. The average time is computed
considering in the 10 runs all the refinement problems having the same com-
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Figure 7.19: Distribution of problems’ complexity.

plexity in terms of total transitions. As expected, problems with higher
number of transitions (and hence the most complex planning domain) take
more planning time than problems with less complexity.

These results demonstrate the usability and scalability of our approach
when applied to a real-world complex scenario.

7.4 CAStlE: a Domain Specific Language for Engi-

neering Collective Adaptive Systems

In chapter 6, we have proposed a framework to build CAS that integrally
addresses the problem of collective behavior and hierarchical organization
of ensembles, allowing for flexible and efficient adaptation in such systems.
The framework relies on the design for adaptation approach presented in
this dissertation, mainly based on the domain objects model and the incre-
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Figure 7.20: Percentage of problems solved within time t.

mental service composition approach, for modeling and execution service-
based systems, respectively. Moreover, it has been built around the concept
of ensembles role, primarily determined by the ways a role negotiates with
other roles. Although we provide approaches for the design and operation
of (collective) adaptive systems, as well as techniques for performing both
selfish and collective adaptations, a sound engineering process for CAS is
still missing. In particular, a CAS is specified at a low level of abstraction
(XML files), a task that tends to be time-consuming and error-prone when
the size of the system grows. Moreover, the comprehensibility of a systems
specification is hindered.

We adopt the Model-Driven Engineering (MDE) [164] vision, which pro-
poses to reduce the complexity of development by adopting models as first
class artifacts in the process. This would allow developers to tackle the
engineering process at a higher level of abstraction. The modeling sup-
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Figure 7.21: Average refinement time for problem complexity.

port should be tailored to a CAS as a whole, covering all its aspects, from
single-entity to ensembles modeling, and from selfish to collective adapta-
tion constructs modeling. Therefore, we extended our framework by spec-
ifying a domain specific language (DSL) for defining CAS, named CAStlE
[32, 33]. The DSL is made-up of three different views, devoted to the
specification of an adaptive system, ensembles, and collective adaptation,
each of which based on a corresponding meta-model. This modeling sup-
port allows the reduction of the complexity of specifying CAS by providing
domain-specific concepts to designers, who do not have to deal with XML
files. Moreover, it avoids inconsistencies and other specification errors by-
construction, since the corresponding models would be invalid against the
meta-model definitions. As a consequence, by adding this modeling sup-
port layer to our existing design for adaptation framework, we can enhance
the CAS design phase by reducing the possibility of incurring in errors, as
well as by improving the understandability of system specifications. The

214



design and implementation of CAStlE is detailed in the next section.

7.4.1 CAStlE Design and Implementation

The design of CAStlE has been tackled by adopting the separation-of-
concerns principle [165]; more precisely, three different sub-languages have
been introduced, each of which specifically tailored to a specific aspect of
the system. In particular, one is devoted to the specification of an adaptive
system and its domain objects; one enables the definition of ensembles to-
gether with issues and solvers; and one addresses the collective adaptation
design, that is event handlers. In this way, the complexity of designing
a CAS is alleviated by partitioning the system in simpler sub-problems;
moreover, it discloses the opportunity of re-using parts of the system spec-
ification in other contexts, notably the same adaptive system in different
ensembles, or the same ensemble in different collective adaptations. In
the following three paragraph, each of the languages will be presented by
illustrating the main modeling concepts offered to the designer19. Each
diagram contains named boxes that represent meta-classes, possibly con-
taining meta-attributes. Moreover, meta-classes are connected by means
of relationships. In particular, a diamond-shaped arrow-head is used for
compositions, a triangle-shaped arrow-head for generalizations, and simple
arrow heads for associations.

The Adaptive System modeling language. An excerpt of the Adap-
tive System metamodel is shown in Figure 7.22. An AdaptiveSystem is a
composition of DomainObjects, each of which including a CoreProcess,
Fragments, and DomainPropertys. It is worth noting that the multi-
plicity boundaries put constraints on the well-formedness of an Adap-
tive System model. Notably, there must be at least a DomainObject,
and each DomainObject must contain one unique CoreProcess. The rela-
tionships between domain objects and domain properties establish that a
domain property represents internaldomainknowledge if defined within
the DomainObject (composition relation), whereas it represents external
domainknowledge if referred to by a simple association.

19 The reader is referred to https://github.com/das-fbk/CAS-DSL for the complete metamodels.
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Figure 7.22: Excerpt of the Adaptive System metamodel.

Both processes and domain properties can be reduced to state transition
systems. From a modelling point-of-view, the only difference between the
two is that for processes (both core and fragments) there is no notion
of initial state, or better, it is possible to set multiple states as initial
through a Boolean attribute (see isInitial in State). On the contrary,
a DomainProperty must have a LInitialState, as constrained by the
multiplicity boundaries of the linitialstate relationship. The remaining
part of the modeling concepts mirrors the adaptive system model.

Figure 7.23 shows an excerpt of the Urban Mobility System model,
detailed in section 7.3.1 and specified by using CAStlE. As we can see,
it is composed by a set of Domain Objects (e.g., User, UrbanMobili-
tySystem, FlexiBusDriver, FlexiBusCompany, etc.), each one including a
CoreProcess (e.g., PROC User, PROC UrbanMobilitySystem, etc.) and a
set of Fragments (e.g., UMS provideTripAlternatives, FD executeFlexibus
Route, FC userRegistration). The DomainProperty modeling the internal
knowledge of a domain object is also part of the domain object itself.

Figure 7.24 gives more details on how CAStlE can be used to model
CoreProcesses and Fragments. In particular, the CoreProcess of the
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Figure 7.23: Excerpt of the Urban Mobility System.

User is composed by a sequence of activities (i.e., abstract and concrete)
and a set of goals that are used to annotate the abstract activities (e.g.,
USER PlanTrip, USER ManageTrip and USER ExecuteTrip). A Fragment

is modeled as a state transition system, with states (e.g., ST0, ST1, etc.)
and the respective input and output activities (e.g., DriverLoginRequest,
DriverLoginAck in the fragment FC driverLogin).

The Ensemble modeling language. As previously discussed, domain
objects can be grouped in ensembles in order to play a specific role. This
is reflected in the ensemble modelling language, an excerpt of which is
shown in Figure 7.25. In particular, an Ensemble contains a number of
Roles played by DomainObjects and defines a set of Issuetypes. The
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Figure 7.24: Excerpt of Core Processes and Fragments.

relationships between domain objects and roles allow for a domain object
to play multiple roles (or none), while a role can be played by exactly one
domain object.

A role is characterized by RoleParameters and Preferences that de-
scribe the state of the role and domain-specific preferences, respectively.
A role can define Solvers and trigger IssueTypes, as represented by the

218



Figure 7.25: Excerpt of the Ensemble metamodel.

roleSolvers and triggeredIssues relationships, respectively. Both is-
sues and solvers can have parameters, and are related to each other. In
particular, a solver is associated with compatible issue types and issue
types are associated with corresponding solvers.

At this point it is important to remark that in general DomainObject
elements raise a consistency issue, since they shall be defined in the adap-
tive system model to be used in an ensemble. This problem is smoothly
solved by the DSL through the link defined in the DomainObject entity in
this meta-model, called domainObjectSpecification, which points to a
DomainObject entity in the adaptive system language as presented in the
previous section. Such a link guarantees by-construction that each domain
object used in an ensemble model has been defined in the adaptive system
model.

In Figure 7.26 we report the FlexiBus Route Ensemble model, to give
an example of how an ensemble can be modeled by using CAStlE. It is
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Figure 7.26: Excerpt of FlexiBus Route Ensemble.

composed by a set of Roles (e.g., FlexiBusDriver, RouteManagement and
FlexiBus Passenger), each one providing a specific Solver (e.g., ReRoute,
ExitRouteAndDropPickupPoint, and ExitAndChangeMean) able to solve
or to generate an IssueType (e.g., ManageIntenseTraffic).

The Collective Adaptation modeling language. Starting from do-
main objects grouped into ensembles, it is necessary to define adaptation
strategies to realize a CAS. Therefore, the collective adaptation language
(depicted in Figure 7.27) establishes a different grouping layer over do-
main objects, tailored indeed to collective adaptations. In this respect, a
CollectiveAdaptation contains a number of EventHandlers defined over
a set of RoleActivitys, i.e. the activities which are in the scope of the
handler. Each handler catches Events, that are instances of issue types,
and triggers Adaptations, that are instances of solvers.

Also in this case it is worth to note that IssueType and Solver enti-
ties in this model must be consistent with what is defined in the ensemble
model. Moreover, RoleActivitys have to be consistent with domain object
activities defined in the adaptive system model. Similarly to the ensem-
ble meta-model, the links issueSpecification, solverSpecification,
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Figure 7.27: Excerpt of the Collective Adaptation metamodel.

and activitySpecification preserve by-construction the consistency be-
tween the three different views of a collective system specification.

In Figure 7.28 we show the model of an EventHandler, namely FlexiBus

Delay, as defined in CAStlE. Its scope is made by an abstract activity (e.g.,

Figure 7.28: Excerpt of FlexiBus Delay Collective Adaptation.
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USER ExecuteTrip) in the User core process. It specifies the adaptation
that will be triggered (e.g., ReplanJourney) when the corresponding issue
is caught.

Tool Support. As a proof-of-concept for the language we implemented
CAStlE through the Eclipse Modeling Framework (EMF)20. EMF supports
MDE techniques with a set of tools for creating modeling languages and
their ecosystems of utility plug-ins. A language is defined as a model in
the Ecore format (a meta-modeling language), and starting from the meta-
model definition the tool automatically generates model editing facilities
as plug-ins for Eclipse. Moreover, there exist many EMF-based MDE tools
for defining custom editors, model transformations, and so on.

For the implementation of CAStlE we have defined three metamod-
els, namely AdaptiveSystemMM.ecore, ensembleModel.ecore, and Collec-
tiveAdaptionModel.ecore. Starting from them and by exploiting the gener-
ation facilities of EMF we obtained model editor plug-ins in an automatic
way. The checks devoted to validate the conformance of models to their
meta-models is also automatically generated by EMF, and is based on the
constraints specified in the meta-models themselves (notably multiplicities
of the relationships). Moreover, each of the defined meta-models conveys
the creation of a corresponding model editor, which allows for the three
views of CAStlE to be independently edited and linked together later on.
We provide some demonstrative videos showing how to install21 and run22

the tool, whose code is available as GIT repository23.
The first experiences we had using the tool already gave some confidence

about the potentials of approaching CAS modeling at a higher level of
abstraction as the one offered by CAStlE. The learning phase necessary
to a domain expert to be able to use CAStlE is limited to understanding
how the different characteristics of a CAS are modeled in the three views.
In our case, the domain experts, who were not involved in the concrete
implementation of the meta-models, took less than one day to learn the
tool and start using it.

From a practical perspective, specifying a CAS as a set of models rather
than XML files avoids the typical burdens of dealing with (structured) text
20 https://www.eclipse.org/modeling/emf/ 21 https://youtu.be/EkLBh1RStgQ
22 https://youtu.be/jC76LDCb078 23 https://github.com/das-fbk/CAS-DSL
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files. In particular, a XML/text editor is not aware of the CAS-specific
concepts and relationships. Therefore, any inconsistency introduced in the
specification of the system can only be discovered at a later stage of the
development, e.g. by running a check algorithm or when trying to execute
the system. It is worth noting that a CAS like the one presented in this
dissertation requires thousands of textual lines for its specification. As a
consequence, discovering the causes of inconsistencies can be an extremely
time-consuming activity. On the contrary, by adopting a DSL as CAStlE
the specification is correct-by-construction, in the sense that the tool does
not allow the introduction of inconsistencies, otherwise the models would
became invalid with respect to their meta-models.

7.5 Discussion

In this chapter, we described the implementation of the design for adap-
tation framework and its evaluation performed through the execution of
ATLAS and DeMOCAS, the demonstrators realized on top of the frame-
work. Each demonstrator allowed us to evaluate different aspects.

ATLAS represents the implementation of the Travel Assistant of our
motivating scenario. Its realization has represented the first attempt of
wrapping real-world mobility services as domain objects, and dynamically
composing them during the system execution. Moreover, the design and
execution of ATLAS allowed us to fully cover the round-trip life-cycle of
our approach for modeling and executing adaptive by design service-based
systems operating in dynamic environments, described in chapter 3. In
addition, we recall that the key idea behind ATLAS is that it is open
to continuous extensions with new services, wrapped as domain objects.
Their functionalities can, thus, be exploited in a transparent way to provide
value-added services to the end-users. Indeed, we already emphasized that
the more (mobility) services are wrapped up and stored in the system’s
knowledge base, the more responsive and accurate the travel assistant will
be. Currently, we are working on adding new services available as open
APIs to extend the application domain of ATLAS. This will also allow us
to perform further tests of the system, as made by more domain objects,
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that is, more inter-operating services.

Our main concern during the realization of ATLAS, was related to the
feasibility of our approach. In other words, we were concerning about (i)
the time and effort required for wrapping services as domain objects, from
the design perspective, and (ii) to what extent the automatic refinement
(fragments selection and composition) affects the execution of the system,
from the execution perspective. Both of these aspects had a higher priority
than the evaluation of other performance values, such as the scalability,
since they strictly affect the effectiveness and the applicability of the whole
approach, from the system’s modeling phase. As discussed in section 7.2.4,
the evaluation results of ATLAS show that the wrapping time of a service as
a domain objects ranges from 4 to 6 hours, by considering average complex
services and both experienced and non-expert developers. Furthermore,
we argue that when we performed these evaluations, CAStlE, the domain
specific language (DSL) for defining (collective) adaptive systems, was not
yet available. As discussed in section 7.4, this modeling support allows the
reduction of the complexity of specifying service-based adaptive systems
by providing domain-specific concepts to designers, who do not have to
deal with XML files. Indeed, what we expect from our next tests in the
near future, where we intend to use CAStlE, is that the wrapping time will
decrease compared to its current value.

As regard our second concern about the influence of the automatic
refinement on the execution of the system, we performed a comparison
between the (average) time required for adaptation and the (average) re-
sponse time of real-world mobility services, wrapped as domain objects
in ATLAS. As discussed in section 7.2.4, we shown that the adaptation
responsiveness is equivalent to that of mobility services, thus it does not
degrade the system’s execution performance.

Eventually, since ATLAS is in continuous evolution, what we plan for
the near future is to run new and more extensive real-world battery of tests
to confirm, or even improve as we believe, the results obtained so far.

DeMOCAS is a simulator for collective adaptive systems, currently im-
plementing and executing the Urban Mobility System firstly mentioned in
chapter 6. Differently from ATLAS that is single-user oriented, DeMO-
CAS simulates collective systems where more than one user are involved.
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Moreover, it also implements a collective adaptation algorithm and it deals
with the organization of the involved entities in collaborative ensembles.

Our main concern during the realization of DeMOCAS, was related to
the adaptability and context-awareness aspects. In particular, our goal
was to demonstrate the usability and the scalability of the approach when
applied to a real-world complex scenario. As discussed in section 7.3.4,
the evaluation performed on multiple users and by collecting execution
and adaptation statistics show that, considering both less complex and
more complex adaptation problems generated by running DeMOCAS, in
the worst case they require less than 0.9 seconds to be solved. Of course,
the evaluation of the collective adaptation algorithm was also of primarily
relevance, and it has been provided and discussed in chapter 6, where the
collective approach has been defined.

Eventually, before concluding this discussion and with a complete knowl-
edge of the two versions of our approach (the original and the extended
ones), we want to clarify something about the transparency of the adap-
tation with respect to the users. As detailed in chapter 5, our framework
exploits a set of adaptation mechanisms (i.e., refinement mechanism, local
adaptation mechanism and compensation mechanism) that can further be
combined together by realizing adaptation strategies (i.e., re-refinement
strategy, backward adaptation strategy), allowing systems to handle more
complex adaptation needs. Each mechanism (and strategy) is triggered by
a specific situation. For instance, the refinement mechanism is triggered by
the need of executing an abstract activity (i.e., the need of reaching a goal),
while the local adaptation mechanism is triggered by the precondition vi-
olation of an activity that has to be performed. These situations can arise
both as a direct and explicit consequence of the user’s actions and as a con-
sequence of unexpected changes in the operational environment in which
the user’s application is in execution (i.e., because of exogenous events in
the operational context). At this point, if we consider both ATLAS and
DeMOCAS and how they perform their travel assistance service,it can be
noted that when an adaptation need arises, the selection of the adapta-
tion mechanisms and / or strategies to perform is transparent to the user,
which will become aware of the effects of the adaptations after their ex-
ecution. To the contrary, the selection of the proper (mobility) services
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used by the mechanisms and / or strategies is indirectly affected by the
user through her preferences that she can express when registering to the
service (i.e., ATLAS) and even change over time. However, For instance,
when refining a journey planning abstract activity, the user preferences
(e.g., I prefer train journey to ride-share journey) are involved in the selec-
tion of the available mobility services whose execution allows the abstract
activity goal to be reached. In this specific example, the application will
give priority to those mobility solutions served by train services, to the
disadvantage of ride-share solutions. Obviously, it can also happen the
case in which there are no solutions satisfying the user’s preferences, and
the provided service composition can represent an undesired outcome for
the user. However, this is also strictly related to the availability of services
in the system. That is why, as we emphasized through this dissertation,
the more (mobility) services are wrapped up and stored in the system’s
knowledge base, the more responsive and accurate the travel assistant will
be. Besides, service providers do their best when defining the adaptation
and application logic of their value-added services modeled on top of our
platform. They aim to offer high quality services satisfying users as much
as possible. For instance, in ATLAS, this is the case in which the travel
assistant, by analyzing the inserted data (i.e., departure and destination
points), decides between a global or a local journey planning (modeled as
abstract activities), with the idea of providing travel solutions as accurate
as possible.

However, the indirect involvement of users in the service selection and
composition tasks can be also seen as a limitation of the overall approach.
Nevertheless, it can be reduced or overcome in different ways, one of which
we have already realized. For instance, one way could be that of con-
sidering all the different adaptation solutions that might satisfy a specific
adaptation need, if more than one solution are available, and involve the
user in the selection of the preferred one. Clearly, this is not trivial at
all, but it requires further investigations both from a modeling and a AI
planning perspective.

From the viewpoint of our design for adaptation framework, as we men-
tioned above, we already did some steps towards an increase of the users
involvement in the dynamic execution of systems. In particular, in chapter
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6 we introduce Collective Adaptive Systems (CAS) and we explained how
our approach has been extended with specific constructs and algorithms
to model CAS. These extensions, which we are going to recall in the fol-
lowing, besides allowing collective adaptation to be performed, also enable
the management of different situations where the involvement of the users
is expected and supported. Indeed, in CAS, entities must be able to self-
adapt simultaneously and, at the same time, preserve the collaboration and
benefits of the system (or sub-system) they are within. Self-adaptation of
an individual entity is therefore not only finalized to the achievement of
its own respective goals but also to the fulfillment of emerging goals of the
dynamically formed sub-systems. Briefly, to allow collective adaptation,
first of all the concepts of role and ensemble have been defined. Each do-
main object in the system can play a specific role defining how it interacts
and collaborates with other entities. Groups of domain objects sharing
common goals, instead, are part of the same ensemble. Moreover, do-
main objects core processes have been extended with solvers and handlers.
While solvers model the ability of a domain object to handle one or more
issues, handlers are used to capture issues, during the nominal execution of
a domain object, and to trigger the appropriate solver. These extensions to
the original approach, required by the need for collective adaptation, allows
for adding dynamicity and flexibility to the system models by giving to the
developers, among other things, the possibility to foresee and implement a
higher interaction with the users and their involvement as proactive users
affecting the adaptation results. In particular, this is done in the solvers,
which can be defined independently from the involved real services.

To better understand this point, let us consider an example coming from
the urban mobility system scenario, given in section 7.3.1. We described
the situation of a flexibus trip with three users already on board and two
other waiting at different pick-up points on the flexibus route. We then
faced the situation in which a road on the route of the flexibus gets inter-
rupted, because of an accident. This forces the flexibus driver to find an
alternative route that, however, can be longer that the current one, thus
causing to the passengers on board to be late to their destinations. More-
over, it could also result difficult or too expensive in terms of time and
money to reach the passengers which are waiting at the pick-up points.
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Eventually, we showed as the solution of this (collective) adaptation need,
through the exploitation of handlers and solvers, trigger a decision process
made by interactions and negotiations among all the involved entities, such
as, the flexibus driver, on board and waiting passengers, and the flexibus
company. As a consequence, the final adaptation is collectively defined
also through a conscious involvement of the affected users.

To sum up, we discussed that, in the original design for adaptation
approach, adaptations are transparent to the users, but indirectly affected
by their expressed preferences that can also change over time. In the
extended version of the approach, instead, the possibility of specifying
solvers to deal with specific issues enables and supports a more conscious
users participation. In any case, we believe that our approach offers still
many open points from which investigate as concern the users involvement
(e.g., machine learning techniques can be used to learn from past decisions
of users).

In conclusion, we find that the results achieved from the implementation
and evaluation of the design for adaptation framework are quite promising,
both in terms of the effectiveness of the design approach, based on domain
objects, and as regard the scalability of the exploited adaptation mecha-
nisms. In spite of that, we think that further modeling and implementation
efforts are required to improve the whole approach (i.e., by extending it to
the application of other adaptation mechanisms) and to extend the appli-
cation domain on which we run our tests (i.e., by wrapping more services
as domain objects), in order to additionally evaluate it.

We refer to chapter 8 for a final overall discussion about the evaluation
of the design for adaptation approach against the requirements that we
meant to address.
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Chapter 8

Conclusion and Future Work

In this dissertation, we presented a solution to the problem of modeling and
executing modern service-based systems able to adapt their behavior when
operating in open and dynamic execution environments. We proposed a
solution based on a design for adaptation approach of service-based adap-
tive systems (see chapters 4 and 5). Furthermore, the presented approach
has been extended in the direction of Collective Adaptive Systems (CAS),
to deal with large-scale systems characterized by the collaborative nature
of their heterogeneous and autonomous entities, and for which adaptation
is a feature of the collectiveness (see chapter 6). To this aim, a collective
adapatation algorithm as been implemented. Lastly, both solutions have
been implemented and evaluated (see chapter 7).

In summary, in this dissertation we have seen how our design for adap-
tation approach faces important issues of both modern service-oriented
environments and the systems operating within them. In section 3.1 we
discussed the requirements that adaptive service-based systems must ful-
fill. There are commonsensical requirements strictly related to the nature
of services (i.e., heterogeneity awareness, autonomy awareness, information
accuracy, portability); requirements demanded by modern service ecosys-
tems (i.e., openness awareness, context awareness, adaptivity, interoper-
ability, customizability). Indeed, modern environments are quite challeng-
ing and they demand a further effort to shape and execute dynamic and
context-dependent services. This effort goes beyond the application of
the service-oriented computing set of design principles [36], which already
greatly support the development of service-oriented applications. We dis-
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cussed in chapter 1 the grand principle behind our approach and how we
thought of addressing it, as summarized in the following.

To deal with open and dynamic environments, we claim that mechanisms
enabling adaptation should be introduced in the life-cycle of systems, both
in the design and in the run-time phases, inspired by the suggestion given
in [24]. This enables service-based applications to both adapt to the actual
context (i.e., the currently available services) and react when facing new
context situations (e.g., missing services, newly available services, changed
services).

To this aim, for an effective management of modern environments, we
push the idea of thinking separately about what a system must do and
how it does it. Indeed, while a service-based application can define what
it does, by specifying its functionalities from its design phase, the concrete
implementation of these functionalities, representing how they might be
effectively accomplished, can vary depending on the execution context,
since it can be provided by disparate real-world services, or a composition
of them, in a completely dynamic way.

This previous insight strongly suggests keeping separate the application
logic (that models the what) from the adaptation logic (that gives the
how). Indeed, differently from the application logic, the adaptation logic
is strongly affected by the run-time operational context of the system, thus
it cannot be foreseen when systems are designed. Moreover, without the
opportunity to know a priori the involved services and the users’ needs,
the detachment of the adaptation requirements from the external services
specification is crucial.

Most of this dissertation was devoted to show how the presented design
for adaptation approach of service-based systems effectively implements
the before-mentioned ideas.

The approach mainly relies on two distinct but correlated models: the
Domain model and the Domain Objects model. The former describes the
operational environment of the system. Particularly, it allows designers
to abstract the domain concepts of the referred domain. The latter al-
lows developers to uniformly specify the autonomous and heterogeneous
services in the environment, and their dynamic interaction, as the concrete
and diverse implementations of the domain concepts specified by the do-
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main model. The connection between the two models is achieved through
the annotation of the services defined in the domain objects model with
composition requirements predicating over the domain model. These two
correlated models ensure the separation between the application and adap-
tation logic, and the detachment of adaptation requirements from external
services specification. Moreover, the approach allows for the specification
of services behaviors (i.e., domain objects core processes) and function-
alities (i.e., domain objects fragments) as processes, with the additional
possibility of defining dynamically customizable processes, that can be con-
cretely specified at run-time, to guarantee the context-aware execution of
systems. For the context-aware customization of processes and the run-
time adaptation of systems in case of exogenous changes, the approach
further exploits automated planning techniques for the dynamic and in-
cremental service composition [25], which are particularly suitable in open
and dynamic environments. This clearly highlights how the approach im-
plements the separation between what a system must do (i.e., customizable
processes) and how it does it (i.e., customized processes).

Lastly, the implementation of all these features requires both design
time constructs (i.e., services wrapped as domain objects, soft depen-
dencies among domain objects, abstract activities, annotations) and run-
time mechanisms (i.e., service composition approaches, strong dependen-
cies among domain objects, dynamic domain objects knowledge extension),
in line with the intuition in [24], where the authors guessed the importance
of introducing mechanisms enabling adaptation both in the design and in
the run-time phases of the life-cycle of systems.

The whole approach (i.e., the models, techniques and related engines)
has been implemented in a comprehensive framework on top of which adap-
tive service-based applications can be modeled and executed. The imple-
mentation of two different demonstrators, ATLAS implementing a travel
assistant and DeMOCAS enabling the modeling of collective adaptive sys-
tems and their execution via a collective adaptation approach, allowed
us to evaluate different aspects of the design for adaptation approach, by
showing promising results (see chapter 7).

Furthermore, the complete life-cycle of the continuous development of
adaptive service-based applications within our design for adaptation frame-
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work has been described in chapter 3. It gives a complete overview of the
different perspectives of the approach (i.e., system models, adaptation, in-
teraction), the involved actors (i.e., platform provider, service providers,
end-users) and their participation in the entire life-cycle.

In this chapter, we are going to discuss how the solution developed in
this thesis addresses the requirements of service-based systems as listed in
section 3.1, as well as the research challenges given in the introduction of
this dissertation.

8.1 Requirements Coverage

In section 3.1 we described the motivating example of this thesis work. It is
concerned with the management and operation of mobility services, within
a smart city as well as among different cities/countries. In particular, it
refers to a Travel Assistant system, able to support users in the overall
organization and execution of their journeys, through the dynamic inter-
operation of different mobility services.

Moreover, we used the travel assistant scenario to highlight a set of typ-
ical requirements of modern service-based adaptive systems that require
urgent attention to make them able to operate in continuous evolving en-
vironments. The aim of this section is that of discussing the coverage
provided by our approach to these requirements. In table 8.1 and table 8.2
we recall each requirement and we map it within the design for adaptation
framework.

In conclusion, we can say that we addressed the challenges given in
chapter 1, beyond some needed improvements that we leave for future
work. Indeed, our solution handles all the discussed requirements needed
by modern service-based applications as a whole, and not only a subset
of them (RC1 in section 1.2). In addition, through the implementation
of the travel assistant described in section 3.1, we demonstrated that our
solution can be applied even out of the realm of research (RC2 in section
1.2).

Of course, we are aware that there are still many extensions and im-
provements we can consider to make our approach more powerful. In the
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Heterogeneity awareness. The system must consider the heterogeneity of the services in terms of technologies,
or in terms of offered functionalities (e.g., REST API vs. SOAP, online booking vs. on board ticketing).

The approach requires the wrapping of different services in a uniform way (i.e., domain objects). This feature
enables the possibility of handling in a systematic fashion heterogeneous services, their offered functionalities and
the way in which they communicate and relate to each other. Indeed, each domain object models both the service
behavior and the service functionalities as processes whose activities implements the effective interaction with the
real-world service, in a transparent way. We have seen in chapter 7 that the wrapping time is a matter of hours, by
considering average complex services and average experienced developers.

Autonomy awareness. The system must take into account the autonomous nature of the services involved.

The discussion about the autonomy awareness relates to the heterogeneity awareness. Also in this case, by wrapping
services as domain objects we do not prevent their autonomy. The wrapped real-world services and their providers
might also be not aware of the domain objects wrapping them, through which they transparently receive service
requests. In other words, they continue to autonomously operate in the real-world, while their corresponding domain
objects are part of the knowledge base of the adaptive service-based systems developed within our framework.

Openness awareness. The system must be capable to operate in open environments with continuously entering
and leaving services, which are not known a priori (e.g., a new ride-sharing service is available in the city).

In this case, the domain model plays an important role. Indeed, as we detailed in chapter 4, the domain model
is specified by domain experts and it describes the operational environment of the system. In particular, it is
defined as a set of domain properties describing specific concepts of the domain. Then, each real-world service
wrapped as domain object in the system must implement one of the domain properties of the domain model. The
adaptive execution of systems is, then, driven by rich composition requirements specified on top of the domain
model properties, independently of the domain objects implementing them. Thus, when a new service is available
in the environment, the only thing that must be done is to define the domain object wrapping it. Indeed, after its
wrapping, the service is seamlessly part of the framework and exploited for automatic composition and refinement,
without the need of re-deploying the whole system or modifying the system’s code in some of its part.

Interoperability. The system must be capable to propose complex solutions taking advantages of the variety of
services (e.g., a user needs of a unique solution with her booking, payment, train journey, and taxi ride).

The core idea is to factorize the capabilities offered by service providers as a set of building blocks (i.e., domain-
objects), which can be easily combined with each other through their offered/required functionalities. These relations
among domain objects give rise to composite services. Moreover, relevant (composite) services can be published so
that stakeholders can personalize and turn them into new available services (i.e. applications, such as the travel
assistant). Thanks to this general approach, we facilitate the integration and interoperability of services that are
otherwise independent and autonomous.

Table 8.1: Requirements coverage provided by our solution (Part 1).
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Customizability. The system provide users with personalized solutions (e.g., a wheelchair user has preferences
on transportation means and stops).

The customizability of systems defined within our approach can be managed at least in two different ways. One
relies on the same real-world services that are wrapped as domain objects and are part of the systems knowledge
base. If they support customization of the service they offer, through their behavior and functionalities, this will be
reflected in the domain objects wrapping them (e.g., if a journey planner allows users to specify different preferences
before planning, this possibility will be also available in the domain object wrapping the journey planner). The
second way, instead, consists in explicitly adding the management of user preferences when implementing domain-
specific domain objects (i.e., travel assistant) and then use these preferences to drive the dynamic service selection
and composition. While we have the first solution for free, the second one requires of future work. In the current
version of our approach we defined a preliminary management of user preferences driving the customizability of
systems. However, this requirement asks more attention in the near future extension of our approach.

Information accuracy. The system must provide up to date and reliable information and solutions (e.g., tempo-
rary changes on a bus route).

The accuracy of the information and solutions provided by the systems is guaranteed by the fulfillment of the
interoperability and context awareness requirements. Indeed, the ability of our approach of enhancing services
interoperability allows, not only to exploit their potentialities through their run-time and context-aware discovery
and composition, but also to fill their gaps, such as the lack of accuracy. In the mobility domain, for instance, we
have discussed in section 7.2.1 the fact that the more global are the services, the more they tend renounce accuracy,
contrariwise to local services. Combining the coverage of global services with the accuracy of local services is
a concrete example of services interoperability supporting accuracy promoted by our framework, and showed in
chapter 7.

Adaptivity and Context awareness. The system must be able to react and adapt to changes in the environment
that might occur and affect its operations (e.g., a strike affects the user’s train journey and the system offers a new
journey plan), in a context-aware fashion.

In the presented design for adaptation approach, these requirements are supported from the design of systems to their
execution. Their main enablers are (i) the possibility of defining dynamically customizable processes when wrapping
services behavior and functionalities, and (ii) the exploitation of automated planning techniques, particularly suitable
for the execution in open and dynamic environments, for the context-aware customization of processes and the run-
time adaptation of systems. In the evaluation of the approach reported in chapter 7, we also discussed the scalability
of the adaptation mechanisms exploited within our framework.

Portability. The system must be deployable in different environments without an ad-hoc reconfiguration from the
developers (e.g., the travel assistant must be usable in Trento as well as in Paris).

The fulfillment of this requirement is particularly guaranteed by the detachment of composition requirements from
the external services specification. This is due to the separation of the adaptation and application logic of systems,
realized by the domain model and the domain objects model, respectively. Indeed, composition requirements are
defined on top of domain properties that abstract specific domain concepts, in a completely separate way from the
concrete implementations (i.e., domain objects) of the services implementing these concepts. In this way, if, for
instance, the user is organizing a train journey, the execution of the travel assistant relies on the train journey
property specified in the domain model. Then, depending on the current context of the user (e.g., the city where
she is moving) and on the services wrapped up as domain objects in the system, the travel assistant will select and
provide to the user the services available for that specific context and situation, without any reconfiguration.

Table 8.2: Requirements coverage provided by our solution (Part 2).
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next section we discuss the most important next steps we plan to take in
the near future.

8.2 Future Work

Although the solution proposed in this dissertation might overcome some
limitations of existing works in the field, there are several open issues we
would like to deal with in the near future. We discuss them in the following
paragraphs.

Technical improvements.

One of the direction for future work is to further improve the approach,
both from the modeling side and the adaptive execution side. Indeed, there
are different improvement on which we can work. Among them, one is the
possibility of verifying the current state of the external domain knowledge
of each domain object through monitoring facilities offered by other do-
main objects (at the moment the state evolves considering only the effect
annotations on the received fragments and might not be aligned with the
real world situation). Another important extension, related to the previous
one, concerns the support for other forms of run-time adaptation
(e.g., reaction to a context change observed by monitoring the environ-
ment). Besides, the current version of our approach deals with functional
adaptation mechanisms and strategies. It would be interesting to consider
non-functional service selection and adaptation strategies (i.e., based
on QoS). Furthermore, we plan to better integrate the data-flow in
our approach. To this aim, we plan to adopt the work in [166] that is
compliant with the service composition mechanisms we exploit. We also
consider to combine the data and control-flow. For instance, what we plan
to do is to relate the definition of an activity precondition not only on the
current context state but also on the values of data variables of the context.
Going on, the most important improvement probably refer to the applica-
tion and evaluation of our solution in distributed environments.
In other words, while up to date we used it in a centralized fashion, we
plan to exploit and adapt it for implementing and executing distributed
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adaptive systems. This would allow us, for instance, to deal with more
than one process engine (i.e., one for each distributed component), by ef-
fectively managing the parallel execution of domain objects core processes,
while running applications within our framework.

User-centricity in service-oriented systems.

An interesting and relevant topic in the service-oriented computing commu-
nity is represented by the user-centricity in service-oriented systems.
Moreover, involving the user in the loop becomes quite more relevant in
self-adaptive applications [167]. Modern service-based adaptive systems
should adapt to the changing environments considering also the current
user intentions, by asking the user himself. Indeed, what can happen is
that the self-adaptive behavior of the application, even if fair and relevant
with respect to the context, lacks of success if it does not corresponds to
the user’s intentions. As regard our proposed solution, we believe that the
combination of the design for adaptation approach with the service com-
position mechanisms that the approach exploits, allowed us to take some
steps forward in this direction. In particular, our solution already supports
the user in performing a variety of different tasks and it deals with reactive
behavior. However, we know that this is still not enough, but we expect
that our approach to can be extended to user-centric systems. For instance,
the approach allows for the specification of abstract composition require-
ments, defined by domain experts at design time. An extension on which
we can work on is the possibility of grounding the abstract composition
requirements on services chosen by the user at run-time. A major effort is
required, instead, to let the user control the execution of the system via a
user-centric service composition, in such a way that she is continuously in-
formed about the execution progress and she can make decisions affecting
it.

Internet of Things domains.

As stated in the introduction, the Internet of Services is becoming more
and more pervasive, since the trend is to deliver everything as a ser-
vice [1]. Moreover, the scenario is still evolving, with the emergence of
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new metaphors, such as that of the Internet of Things (IoT) [168]. An
important direction for future work, which we already started working on,
concerns with the application of our solution to IoT domains. Esti-
mates say that in the coming years billions of devices and objects will form
a large heterogeneous and highly distributed system. These devices can be
seen as service providers, for instance due to their sensing and actuating
capabilities that can be also organized in more complex IoT-based appli-
cations to provide context-aware functionalities to the users. Furthermore,
also in the context of the IoT, self-adaptation is one of the main concerns.
To increase the potentiality of the IoT in improving our ways of living
and working, a significant engineering effort is required [169], including
the modeling and management of the run-time adaptation of IoT-based
systems to different situations. To this aim, we believe that our design
for adaptation approach has the potentiality to be easily applied to IoT
domains, for modeling and executing IoT-based adaptive systems. This is
due, particularly, to the possibility of overcoming the devices heterogene-
ity by wrapping them as domain objects allowing for a systematic way of
managing their interoperability and functionalities composition to specify
relevant (composite) IoT-based services. Furthermore, as we already do
in the IoS, we might specify abstract requirements that are subsequently
refined at run-time by selecting available devices offering the needed func-
tionalities.

Example. For instance, let us consider meeting rooms equipped with things,
i.e., (smart) connected devices and objects such as projectors, speakers,
various sensors, chairs, lights, and curtains. These things may provide
services such as room temperature sensing, light level sensing, turning on
the light, and moving the curtains. In such a scenario, the idea is to dy-
namically realize a composition of IoT-based functionalities to achieve the
goal “deliver presentation”. This involves finding a suitable room based on
user needs, setting up the display devices and managing dynamic changes
in the environment.

We can notice how this scenario is quite similar to that of the travel
assistant in the mobility domain. To consider different scenarios in IoT
domains will also enable us to demonstrate that our solution is domain-
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independent. This is a relevant characteristic if we consider the evolution
of the IoS in the panorama of the Next Generation Internet.

Services evolution.

As known, adaptation may be divided into short-term adaptation and
long-term adaptation, also know as evolution. Differently from the for-
mer, the evolution implies definitive changes to the system that will affect
its future operation. Thinking about services, evolution stands for changes
to their behavior and exposed functionalities (i.e., domain objects core pro-
cesses and fragments) so that they will be propagated to all their future
instances. In this direction, we plan to adopt and further extend the work
in [34], where we started to reason about a service co-evolution approach.
In particular, in [34] we have presented a solution for service co-evolution,
based on the Domain Object concept, which supports deep changes across
a service dependency graph, through the decentralized collaboration of
evolution agents. Based on a classification of externally noticeable service
changes and their potential implications on dependent services, we have
discussed how our approach can automate several types of changes at run
time, and facilitates the coordination of manual maintenance activities in
a number of others. However, although our contribution is a significant
step towards on-the-fly service evolution, we are not there yet.
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