Data-driven Adaptation in Microservice-based
IoT Architectures

Martina De Sanctis
Gran Sasso Science Institute
L’ Aquila, Italy
martina.desanctis @ gssi.it

Abstract—Architecting self-adaptive Internet of Things (IoT)
systems pose a lot of challenges due to heterogeneity, resource
constraints, interoperability, etc. Although microservice architec-
tures (MSA) emerged as a popular solution for developing next-
generation IoT systems, they further increase these challenges.
This can be attributed to the complexity involved in managing
adaptation concerns arising at different levels: i) IoT devices
level, due to open and changing contexts, resource constraints,
etc; ii) microservices level, due to dynamic resource demands;
iii) application level itself, due to the changing user goals. In
fact, recent studies have shown that traditional self-adaptation
techniques are not flexible enough to be applied to MSA based
systems. Moreover, what proposed in the literature handles
adaptation either at the architectural level or at the application
level. Towards this direction, we propose a self-adaptive archi-
tecture for microservice-based IoT systems. In particular, the
architecture supports data-driven adaptations, by also leveraging
machine learning techniques, and handles adaptations at different
levels in a different manner: i) at device level, through a fog layer;
ii) at microservice level, by leveraging the use of service mesh;
iii) at application level, by means of dynamic QoS-aware service
composition.

Index Terms—Self-adaptation, microservices, IoT architec-
tures, machine learning, adaptation levels, data-driven adapta-
tion, software architecture

I. INTRODUCTION

The Next Generation Internet (NGI) initiative [1] envisioned
the need to re-engineer the Internet of the future as well
as modern systems. In fact, modern systems must have a
rightful place at the crossroads of the Internet of Services
(IoS), the Internet of Things (IoT), and the Internet of People
(IoP), thus making them more complex. In particular, dealing
with IoT-based technologies brings new challenges, such as
heterogeneity, interoperability and scalability that typically
identify the IoT domain [2].

In this context, microservice-based architecture (MSA) is
considered as one of the best possible solutions for archi-
tecting IoT systems [3]. However, new challenges arise when
microservices-based solutions are applied to IoT systems.
These refer to the evaluation and maintenance of the Quality-
of-Service (QoS) characteristics of systems (e.g., performance
and reliability) due to the uncertainties faced by IoT devices
because of resource constraints (e.g., battery level, network
traffic), and by the microservices themselves due to challenges
of resource management (e.g., monitoring VMs and containers
which can fail/have resource constraints) [4].

Henry Muccini
University of L’Aquila
L’ Aquila, Italy
henry.muccini @univaq.it

Karthik Vaidhyanathan
Gran Sasso Science Institute
L’ Aquila, Italy
karthik.vaidhyanathan @ gssi.it

Self-adaptation techniques is known to be one of the promis-
ing solutions for managing run-time uncertainties [5]. The
existing self-adaptation techniques can be classified into two
categories, such as proactive and reactive. More specifically,
proactive adaptation techniques enable the system to foresee
any possible QoS issues that may arise at the service or the
device levels [5]. Increasingly demanding users with dynamic
behaviors, and the open nature of the IoT context, call for
reactive adaptation techniques. Concerning the challenges
mentioned above, an ideal microservices-based IoT system
should have self-adaptive capabilities to handle the uncertain-
ties in reactive as well as proactive manner. However, a recent
study has shown that traditional self-adaptation techniques
that make use of MAPE feedback loops or three layers
models, in general, may not work in MSA [6]. This is due
to a fundamental mismatch between the adaptation needs
of microservice-based systems and the support offered by
traditional self-adaptive frameworks and models. Towards this
direction, the approach in [6] proposes a service-mesh based
approach for handling adaptation. That approach works at
the microservice level, only, while microservice-based IoT
systems expose adaptation needs that can arise even from
the device level as well as the application level, and they
might further impact the adaptation needs of the microservices.
This calls for an adaptation framework that encompasses the
adaptation concerns arising from these different levels.

In this direction, we propose a novel self-adaptive archi-
tecture for microservice-based loT systems. In particular, the
architecture handles proactive adaptation by using machine
learning (ML) techniques, and reactive adaptation by ex-
ploiting dynamic microservices composition. Furthermore, it
manages the adaptation at different levels and in a different
manner: i) at device level, through the monitoring of QoS data
of IoT devices, through a fog layer, ii) at service level, by con-
tinuously monitoring the QoS data of services and effectively
leveraging the use of service mesh; iii) at application level,
employing dynamic QoS-aware service composition, driven
by users goals.

II. RELATED WORK

Different approaches for self-adaptation in IoT have been
proposed. An approach based on the MAPE-K loop for
performing adaptations to automatically manage I[oT archi-

tectures was proposed by Weyns et al. [7]. Model-Driven
Engineering (MDE) based approaches were presented in [§]
and [9] where the adaptation is carried out using the concept of
models@run.time and MAPE-K loop. An agent-based frame-
work for performing self-adaptation for IoT applications was
proposed in [10]. Works providing adaptation in microservice-
based environments have also been presented. Florio ez al. [11]
provided an agent-based approach for handling adaptation
through a decentralized MAPE loop. A reference architecture
for self-adaptation in microservices using the concept of
an adaptation registry was proposed by Baylov er al. [12].
Khazaei et al. [13], instead, introduced the idea of using self-
adaptation as a service for managing adaptations concerns in
microservice-based architectures. A self-adaptation service for
microservice-based architecture using Kubernetes based on the
Rainbow framework was proposed by Aderaldo er al. [14]. Yet,
a self-healing microservice-based architecture that identifies
anomalous behaviors in docker containers using ML was pro-
posed by Magableh et al. [15]. To the best of our knowledge,
a full-fledged approach, framework or reference architecture
for self-adaptation that combines MSA and IoT does not exist.

Differently from the works reported above, our architecture
takes into account adaptation concerns that may arise from dif-
ferent levels, such as IoT devices, microservices, and users. It
also considers the adaptation challenges that emerge when IoT
devices and microservices are used in tandem. Furthermore,
besides reactive adaptation, the architecture leverages the use
of ML techniques to perform proactive adaptation in scenarios
where such adaptation guarantees higher effectiveness.

III. MOTIVATING EXAMPLE

The NdR Street science fair [16] is an event organized by
the University of L’ Aquila. It takes place at multiple venues
in the city center and witnesses around 25,000 participants
every year. Our research group has been invited to develop an
application for improving the quality of visiting experience
by providing information on events, venues, parking lot,
localization, etc. by using various sensors, i.e., people counter,
parking mats, beacons, cameras, QR code reader, etc. These
sensors are deployed mostly in outdoor environments. Based
on this scenario, our plan is to develop a microservice-based
IoT application consisting of microservices for handling venue
booking, venue management, localization, payment, etc.

In this context, considering the heterogeneity and multitude
of involved actors, such as IoT devices, microservices, and
users, different kinds of uncertainties have to be managed.
They can be classified into three levels, corresponding to the
involved actors. For example:

i) application level: Suppose users want to use online book-
ing for both the venue and desired transport mode. Embedding
in the system behavior all the possible combinations is cumber-
some. Possible adaptation than can be to dynamically combine
the venue booking and selected transport mode microservices
(e.g., exhibition event and taxi) to accomplish the user goal.

ii) microservice level: Consider that the booking microser-
vice suddenly gets lots of requests due to a popular event and

we gather context information from the camera about the flow
of people to venues. This information, along with expected
response time, can be used to perform proactive adaptation by
adding new instance(s) of the booking microservice.

iii) device level: Consider that hand-held QR code reader
has limited battery capacity. ML can be used to predict the
battery level and dynamically adapt the data transfer frequency.

IV. PROPOSED ARCHITECTURE

The proposed architecture as depicted in Figure 1 consists

of three layers, namely Edge, Fog and Cloud. While the fog
layer handles the device level adaptations specific to devices
in the edge layer, the cloud layer handles adaptations at the
microservice and application levels.
Edge and Fog Layer. The Edge layer represents the set of IoT
devices (sensors and actuators) in the system. Sensors send the
data sensed to the Fog layer based on the frequency of data
transfer. They also periodically send their QoS data including
information such as battery level, memory consumption, etc.
to Fog Layer.

The Fog Layer is responsible for performing the lightweight

computations on the sensed data and further perform ar-
chitectural adaptations/re-configurations on the IoT devices
if required based on the QoS data. It consists of multiple
Compute Node consisting of a Compute component and an
Adapter component. The former is responsible for performing
preliminary computations on the sensed data such as data ag-
gregation, cleaning, etc. The later is responsible for leveraging
the QoS data obtained from the devices, by using ML models
to perform proactive adaptations of the IoT devices. The
adapter applies some pre-processing such as feature scaling,
normalization, etc. on the real-time QoS data of the IoT
devices. It then uses ML models to predict the expected
QoS for a given time interval. These models are periodically
received from the cloud layer. The Adapter then selects an
adaptation plan, to be used if any QoS issue is forecasted, and
communicates it to the compute component. The selected plan
is then used to perform device-level adaptation, such as reduce
the sensor data transfer frequency, modify the communication
protocol, etc (eg. device level in Section III). The Fog Layer
further communicates the data received, which includes the
QoS data as well as the sensed data, to the Cloud Layer
through the Message Broker.
Cloud Layer. This layer performs heavyweight computations.
It consists of four main layers. (Despite the ordering depicted
in Figure 1, we describe, in the order, microservice, man-
agement, adaptation and application infrastructure layers, for
comprehensiveness).

1) Microservice Layer: It consists of the set of microservices
implementing the functionalities of a given IoT system. For
monitoring the individual microservices and further use this
for performing adaptation, we use the concept of service-
mesh/sidecar, as suggested by Mendonga et al. [6], [17].
The service-mesh provides ways to monitor various QoS
parameters of each microservice, such as traffic, response time,

User

Edge Fog) Cloud
Application Infrastructure
@ User Goal Parser Service Composer ° API Gateway
Compute Node N A
AR e H Tl eeeeeseeeeeceeneeni Microservice ,........ccoeeeueeeinnns .
Device 1 : H i i
° Service Mesh ° Service Mesh ARycanS
@ Adapter (\ 4
Device 2 ﬂ Broker }
I vice 3 I
Service Mesh
AR Compute Node e
Device 3 @ Compute
A I Management Infrastructure
m @ Adapter @ Service @ Service Mesh e Service Discovery
Management Control Plane
AR Compute Node Adaptation Infrastructure
Device 1 © compue AP @ e 1T B raman
. loT QoS Store . Context Analyzer Adaptation
I : : . Initiator QoS Updates
A . Service QoS Store . i
© adapter : S Lo :
Device n ' . @ ML Engine Decision Maker = |
. e Context Store . .
f—Model Updates/ QoS Data;T

Fig. 1. Self-Adaptive architecture proposed for microservice based IoT Systems

etc., that can be obtained from the Service Mesh Control Plane
in the Management Infrastructure layer.

2) Management Infrastructure Layer: It handles the dis-
covery of microservices, provides information on their status,
manages them and executes adaptation if needed. It consists
of three main components: i) Service Management, it is
responsible for executing the architectural adaptation of the
microservices, e.g., increasing the memory of the microservice
instance, automatically add an instance, etc. based on the
adaptation decision provided by the lower layer. It is also
responsible for providing information on the status of the
microservices upon request to the ii) Service Mesh Control
Plane, it regularly monitors the QoS level of every microser-
vice. These QoS data are further sent to the Adaptation
Infrastructure layer for processing; iii) Service Discovery, it
routes the requests from the API Gateway to the respective
instances of microservices.

3) Adaptation Infrastructure Layer: This is a dedicated layer
providing mechanisms for effectively supporting adaptations at
different levels. It is responsible for collecting the context and
QoS data from the Fog and Management Infrastructure layers.
It leverages these data to generate learning models for QoS
prediction and further decide on the best adaptation strategy
based on the context. It consists of:

i) IoT QoS Store, ii) Service QoS Store and iii) Context Store
stores information such as device-level QoS, service level QoS,
and sensor data from Fog Layer, respectively.

iv) ML Engine is the key component as it is responsible for
leveraging the data obtained to create forecast models that can
predict the expected QoS of IoT devices and microservices.

It mainly uses two data sources, [oT and Service QoS Stores.
These data form time-series datasets consisting of the QoS
values for different intervals of time. ML Engine applies pre-
processing steps on these datasets, such as feature scaling,
data aggregation, etc. These pre-processed data are then used
for creating forecast models, by using LSTM networks [18] as
defined in [19]. This process is repeated periodically to ensure
continuous update of the models thereby avoiding the possible
issue of concept drift [20]. It results in the creation of two
types of models: 1) for forecasting the QoS of IoT devices,
which are communicated periodically to the Fog layer, and 2)
for forecasting the QoS of microservices, which are sent to
the Context Analyzer;

v) Context Analyzer is responsible for identifying the need
for adaptation of microservices based on the QoS forecast
models from the ML engine and the data from the context
Data Store. It follows a two-step process. First, at every instant
of time, it obtains the latest Service QoS data to forecast the
expected Service QoS for a given interval of time, using the
forecast model. This is then used to identify any possible
QoS issues in any of the microservices. Second, it uses the
context data to gather specific information (refer Section III
(microservice level). It combines these data to identify the
need for adaptation and triggers the decision-maker if an
adaptation need arises.

vi) Decision Maker is responsible for identifying the best
adaptation technique based on the information from the con-
text analyzer. It uses a set of adaptation techniques that
consists of adaptation options, such as dynamically scaling
microservices, auto-rollback and restarting microservices, etc.

These techniques can also be combined to form more complex
strategies. In particular, to this end, we can exploit the Q-
Learning technique as defined by Muccini et al. [19] or Al
planning as defined by Bucchiarone et al. [21]. For instance,
in the (microservice level) scenario in Section III, the Context
Analyzer can trigger the adaptation based on the forecasted
response time of the booking service and context data. Based
on this, a new instance can be added. This decision is then
communicated to the Adaptation Initiator.

vil) Adaptation Initiator acts as a bridge between the
decision-maker and the Management Infrastructure layer, by
forwarding the adaptation request to the higher layer.

4) Application Infrastructure Layer: Its purpose is to execute
application-level adaptation based on their goals. In fact, some
of the functionalities provided by the application are specified
only as abstract goals (e.g., an application-level scenario in
Section III) that can be dynamically refined at runtime, through
a composition of microservices whose execution allows users
to achieve the goals. It consists of three main components:
1) User Goal Parser: it parses the abstract goals and translates
them to the format as required by the Service Composer. Goals
can be specified through various goal models available in
the literature, for instance, the one used in [22]. ii) Service
Composer: it uses the QoS data/forecasts available from the
lower layer to decide on the best composition of microservices,
driven by the abstract goals from the user goal parser. The
composition can then be performed, for instance, by using an
Al planning method as suggested by De Sanctis et al. [22].
The identified composition of microservices is sent back to the
user application, which then uses the API gateway to invoke
the respective microservices. For those scenarios where the
service composition is not required, e.g., login operation, the
user request is directly routed to the API Gateway. iii) API
Gateway: it performs the routing of the requests from the user
to the corresponding instances of the microservices through the
service discovery component.

The approach can be realized by using a combination of
various technologies, such as Apache Kafka (Message broker);
Istio (service mesh); Kubernetes and Docker (deploying and
managing microservices); Apache Zookeeper (service discov-
ery); Elasticsearch (Data stores); Grafana (visualization), and
Keras with Python (machine learning models).

V. CONCLUSION AND FUTURE WORK

We proposed a self-adaptive architecture for microservice-
based IoT systems. Future work includes a concrete imple-
mentation of the architecture for the NdR application to show
its effectiveness and efficiency. This shall be performed by
realizing the architecture using the technologies mentioned
above. The effectiveness shall be obtained by measuring the
accuracy of predictions made, energy saved for IoT devices,
the degree of user goals achieved, the average response time of
microservices, etc. The efficiency shall be measured based on
the quality of the adaptations performed. The implementation
shall also be extended to consider different challenges such as
DevOps integration, testing, etc. as mentioned in [17].

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]
[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

E. Commission, ‘“Next Generation Internet initiative.” 2019,
https://ec.europa.eu/digital-single-market/en/policies/next-generation-
internet.

A. Taivalsaari and T. Mikkonen, “A roadmap to the programmable world:
software challenges in the iot era,” IEEE Software, vol. 34, no. 1, pp.
72-80, 2017.

Microsoft, “Azure iot reference architecture,
https://aka.ms/iotrefarchitecture.

P. Jamshidi, C. Pahl, N. C. Mendonga, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, pp. 24-35, 2018.

C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
and Mobile Computing, vol. 17, pp. 184-206, 2015.

N. C. Mendonga, D. Garlan, B. R. Schmerl, and J. Camara, “Generality
vs. reusability in architecture-based self-adaptation: the case for self-
adaptive microservices,” in Proceedings of the 12th European Confer-
ence on Software Architecture: Companion Proceedings, ECSA 2018,
2018, pp. 18:1-18:6.

D. Weyns, M. U. Iftikhar, D. Hughes, and N. Matthys, “Applying
architecture-based adaptation to automate the management of internet-
of-things,” in European Conference on Software Architecture. Springer,
2018, pp. 49-67.

F. J. A. Padilla, “Self-adaptation for internet of things applications,”
Ph.D. dissertation, 2016.

F. Ciccozzi and R. Spalazzese, “Mde4iot: supporting the internet of
things with model-driven engineering,” in International Symposium on
Intelligent and Distributed Computing. Springer, 2016, pp. 67-76.

N. M. do Nascimento and C. J. P. de Lucena, “Fiot: An agent-based
framework for self-adaptive and self-organizing applications based on
the internet of things,” Information Sciences, vol. 378, pp. 161-176,
2017.

L. Florio and E. Di Nitto, “Gru: An approach to introduce decentralized
autonomic behavior in microservices architectures,” in 2016 IEEE In-
ternational Conference on Autonomic Computing (ICAC). 1EEE, 2016,
pp- 357-362.

K. Baylov and A. Dimov, Reference Architecture for Self-adaptive
Microservice Systems. Cham: Springer International Publishing, 2018,
pp- 297-303.

H. Khazaei, A. Ghanbari, and M. Litoiu, “Adaptation as a service.” 2018.
C. M. Aderaldo, N. C. Mendonga, B. Schmerl, and D. Garlan, “Kubow:
An architecture-based self-adaptation service for cloud native applica-
tions,” in Proceedings of the 13th European Conference on Software
Architecture - Volume 2, ser. ECSA °19, 2019, p. 42-45.

B. Magableh and M. Almiani, “A self healing microservices architecture:
A case study in docker swarm cluster,” in Advanced Information
Networking and Applications. Springer International Publishing, 2020,
pp- 846-858.

“Notte dei ricercatori aq,” 2019, https://nottedeiricercatoriaq.it/.

N. C. Mendonga, P. Jamshidi, D. Garlan, and C. Pahl, “Developing
self-adaptive microservice systems: Challenges and directions,” IEEE
Software, 2019.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

H. Muccini and K. Vaidhyanathan, “A machine learning-driven approach
for proactive decision making in adaptive architectures,” in 2019 IEEE
International Conference on Software Architecture Companion (ICSA-
C). IEEE, 2019, pp. 242-245.

A. Tsymbal, “The problem of concept drift: definitions and related
work,” Computer Science Department, Trinity College Dublin, vol. 106,
no. 2, p. 58, 2004.

A. Bucchiarone, M. De Sanctis, A. Marconi, M. Pistore, and P. Traverso,
“Incremental composition for adaptive by-design service based systems,”
in IEEE International Conference on Web Services, ICWS, 2016, pp.
236-243.

M. De Sanctis, R. Spalazzese, and C. Trubiani, “Qos-based formation of
software architectures in the internet of things,” in Software Architecture
- 13th European Conference, ECSA 2019, 2019, pp. 178-194.

ver. 2.1 2018,

