
Leveraging Multi-Level Modeling for
Multi-Domain Quality Assessment

Maria Teresa Rossi∗, Martina Dal Molin†, Ludovico Iovino∗, Martina De Sanctis∗, Manuel Wimmer‡
∗Gran Sasso Science Institute, Computer Science Department, L’Aquila, Italy

{mariateresa.rossi,ludovico.iovino,martina.desanctis}@gssi.it
† Gran Sasso Science Institute, Social Sciences Department, L’Aquila, Italy

{martina.dalmolin}@gssi.it
‡ CDL-MINT, Johannes Kepler University, Linz, Austria

manuel.wimmer@jku.at

Abstract—Quality Evaluation Systems (QESs) are a class of
software systems which receive evaluation requests and quality
requirement specifications as inputs and produce results as out-
puts of an assessment process. This class of systems usually work
with a quality model including quality definitions and metrics,
and produce the output as a quantitative evaluation of a subject.
QESs can be implemented using model-driven techniques and
dedicated languages, for domain-specific evaluation of different
subjects. However, applying traditional two-level metamodeling
techniques for this scenario entails that every time a QES is
required, a new modeling framework, with consequent engine for
interpreting the newly defined models, must be re-developed from
scratch. To overcome this repetitive process, in this paper, we
propose a Multi-Level Modeling (MLM) approach for realizing
the artifacts involved in the development phase of a QES
which are reusable across multiple domains. We demonstrate the
approach with running examples from three different application
domains comprising different evaluation scenarios.

Index Terms—Quality Evaluation Systems, Multecore, Multi-
level Model Interpretation

I. INTRODUCTION

Quality Evaluation Systems (QESs) are software systems pro-
viding quality evaluation results of given subjects, according
to evaluation requests and quality requirements received as
inputs. QESs basically carry out an evaluation process to
accomplish their task, and may be implemented as a part of a
higher-level system, as well as independent systems [1]. Such
systems usually work with a quality model including quality
definitions and corresponding metrics. In other words, QESs
are measurement tools making use of evaluation techniques to
produce quantitative evaluation of a subject as result.

Quality models have been used in software evaluation for
decades as tools for assessing the degree to which a software
product satisfies stated and implied needs [2]. A quality model
is a model expressing quality as a set of characteristics, also
called attributes, establishing relationships between them. A
quality model relates to quality requirements and poses the
bases for assessing the quality of a subject. A number of
specialized tools have been proposed to assess the quality
of different subjects, e.g., software systems [3], modeling
artifacts [4]–[6], software architectures [7], to mention just
a few. QESs have been often implemented for the domain-
specific evaluation of different subjects. For instance, in our

previous work [8], we have presented a reference architecture
for Key Performance Indicators (KPIs) assessment of Smart
Cities [9]. The system defined on top of it is realized as a
QES where the subject of the evaluation is a smart city, and
the quality model against which to perform the assessment is a
KPIs definition model. It is worth to note that the assessment
process shows similar characteristics even when the subject
of the evaluation changes. The overall objective is commonly
the quantitative assessment of a given subject passed as
input, where the assessment is executed on top of a quality
definition, required (and in best cases defined) by the user.
Despite these commonalities, QESs are often re-implemented
from scratch by using existing tools, e.g., spreadsheets, or
developed as independent systems, e.g., Web or standalone
applications. Domain-specific languages (DSLs) offer a degree
of abstraction that helps in the definition process of both
quality characteristics and evaluation subjects, so that the
results of the process are more robust. This implies reducing
the time to market, and facilitating the definition of the artifacts
involved in the entire process. DSLs are often intended to
be used by someone who is not a programmer and therefore
they offer advantages similar to the usage of programming
languages, but for domain experts. Although using traditional
Model-Driven Engineering (MDE) approaches when realizing
QESs for multiple subjects may already provide benefits,
there is also a limitation that it is worth to be investigated.
Indeed, there is an issue in applying traditional two-level
metamodeling techniques for this scenario. Every time a QES
is required, all the involved modeling artifacts, related to the
subject of evaluation and quality definition, with consequent
engine for interpreting these models, must be re-developed.
Even if the benefits of traditional two-level metamodeling with
respect to traditional code-centric techniques are still valid,
the assessment process is analogous independently from the
subjects under evaluations across different domains. Multi-
level Modeling (MLM) provides an unbounded number of
levels of abstraction [10], offering enough flexibility when
specific patterns arise in modeling approaches [11].

In this paper, we use MLM to realize QESs for multiple
domains. Specifically, we aim to transform a QES development
approach based on two-level modeling into a multi-level based



one. Our goal is to define what we call a multi-level framework
that allows to customize QESs for different domains. In this
work, we present three different domains in which we applied
the proposed approach and, subsequently, we show three
different running examples for showing the usefulness of our
proposal. In particular, by means of our running examples
we demonstrate as an MLM approach guarantees the same
expressiveness and modeling power of traditional two-level
modeling techniques, while further pushing forward reuse
and customization. As a consequence, our approach allows
reducing time-to-market for the modeled systems and error-
proneness.
Structure of the paper. The paper is organised as follows.
Section II describes three candidate scenarios of application
cases which are used as running examples throughout the
paper. Section III presents our general architecture with the
involved artifacts, explained in terms of the proposed hier-
archies of models, and shows the results of the assessment
process on the running examples. In Section IV we discuss
related work whereas we draw some conclusions in Section V
with an outlook on future work.

II. BACKGROUND AND RUNNING EXAMPLES

Assessing the quality of a subject when supported by an
automated tool is a process involving multiple artifacts and
technologies. In our case, if we concentrate on MDE as
technical space and inspired by the work presented in [8],
[12], we define the assessment process as Areq:

Areq(Subject,Qm)→ EQm (1)

where Areq is the assessment request, given a Subject and a
quality definition expressed as a quality model Qm. The output
of this request is an evaluated quality model EQm, where the
requested quality characteristics are expressed quantitatively.

In this context, we have identified three possible case studies
with commonalities in the request and in the expected result
type, i.e., a quantitative analysis of the subject, that can be
assessed by implementing a QES. These three case studies
are used for the remaining of the paper as running examples.

A. Smart City KPIs evaluation

Smart governance exploits KPIs coming from standard guide-
lines (e.g., [13], [14]), to assess smart cities in terms of
sustainability and smartness. KPIs assessment in smart cities
is used to support decision-making processes in order to have
a global vision of the city under analysis. An example of KPI
that can be selected in this scenario, is called Green Areas
(GA) in [13]. This particular indicator measures the green area
in the city per 100.000 inhabitants. It is calculated as follows:

GA =
TotalGreenArea

1
100000 × CityPopulation

(2)

The data needed to calculate KPIs in a smart city may come
from different types of sources, e.g., open libraries, private
repositories. Data is attached to the representation of the
input subject for which the evaluation is performed, i.e., the

smart city. KPIs are required in the evaluation as performance
indicators of the subject and are part of the quality model
passed as input to the evaluation request. Thus, we can define
a relationship between the smart city and the subject using
Definition (1) as:

instanceOf(SC, Subject)∧ instanceOf(KPIm, Qm) (3)

where SC is a definition of a smart city, and instanceOf is
the relationship of instantiation of a subject of the assessment
process. The same relation persists between the requested
KPIs, namely KPIm, and the quality model, Qm.

B. Research Institute Social Impact

In the context of Higher Education Institutions (HEIs), i.e.,
universities and research centers, the social impact is measured
and assessed to demonstrate the positive direct and indirect
impact on companies and societies generated by the research
and third mission activities [15]–[17]. HEIs may generate
positive impacts through a variety of activities, e.g., public
engagement and technology transfer, and such impact may
be evaluated using several impact dimensions, ranging from
innovation, economic, technological and social. Given the in-
creasing use of social media in HEIs, an interesting dimension
to be considered is the distribution of social media content
among the various departments of an institute. For example,
Equation (4) reports the formula related to the calculation of
the Content Distribution (CD) related to a department i of an
HEI j.

CDi =
Mediai

MediaTotalj
(4)

By using Definition (1), we can define the following relation-
ship:

instanceOf(I, Subject) ∧ instanceOf(SMm, Qm) (5)

where I is a representation of an institute to be evaluated (e.g.,
research center, school), and SMm is a definition of a set of
social metrics interesting for the candidate institute.

C. Covid-19 Risk

During the pandemic period, the Italian Ministry of Health
defined 21 indicators [18] to monitor the transmission and
impact of the virus in Italy. The monitoring was carried out
at a regional granularity in order to assign a different level of
risk to every region. One of these 21 indicators is the one that
calculates the Intensive Care Unit (ICU) Occupancy rate (IO),
as reported in Equation (6), by Covid patients (Patients) over
the total number of available beds in ICU, namely BedsICU .

IO =
Patients

BedsICU
(6)

The input data needed to calculate these risk indicators were
collected by the different health institutes in the regions. In this
scenario, the subject of the quality assessment is the region that
has to calculate the 21 indicators composing, in this case, the
instance of the quality model. The relationship between the
region and the subject using Definition 1 is as follows:



instanceOf(Region, Subject) ∧ instanceOf(RIm, Qm)
(7)

where Region contains the definition of the input parameters
needed to calculate the risk indicators defined in RIm.

D. Synopsis

The presented examples only show one measurement per case
study, for sake of readability, but in reality these examples
contain a large number of requested calculations with com-
plex operations that are supported by the developed engine
discussed in [12].

de Lara et al. identified a set of patterns explaining when
MLM may be used successfully [11]. By analyzing these
patterns, we found some of them in the scenarios exposed
above and we discuss them in the following:

– Type-object pattern: this pattern allows the explicit mod-
eling of types and their instances, where types are not
static and may be dynamically included. As can be
guessed from definitions (3), (5) and (7) this pattern
persists in all three scenarios, since any modification to
the Subject, for instance the addition of a new concept,
reflects dynamically on the three considered subjects,
i.e., smart city, institute and region. To give a concrete
example in terms of MLM, a modification at the level
Subject@2 in Fig. 2 is dynamically reflected at the level
@1 in Fig. 2, where indeed the multi-level hierarchy for
the subject definitions is modeled. A further example
applying to all the considered domain refers to the
dynamically addition of different Data types in the level
@2, as soon as new data types are identified in the
management of metrics. Then, this implies the creation
of instances of the new data types in the lower levels
(e.g., @0 in the multi-level hierarchy shaped in Fig. 2).

– Dynamic features pattern: this pattern enables the dy-
namic addition of new features to a type. Thus, it shares
similarity with the previous one. It also persists in all
the considered scenarios. This means that, by looking at
Fig. 2, if we add a new feature to the Subject type at
level @2, it is inherited by all the Subject’s instances at
the level @1.

– Dynamic auxiliary domain concepts pattern: it is a variant
of the dynamic features pattern, in which, instead of the
definition of features for dynamic types, the definition of
dynamic entities in relation to dynamic types is allowed.
In other words, as stated in [11], this pattern helps with
the dynamic addition of new entities related to a type, as
well as the instantiation of those entities, which should be
correctly related to instances of the type. Also this pattern
persist in all the scenarios. For instance, we may need an
entity to describe the repository systems to which the data
sources are connected. In this case we can dynamically
add an entity called Repository and use it to describe
the data repositories to which different Sources refer, by
defining a relation between them.

– Relation configurator pattern: this pattern is related with
the configuration of a reference type dynamically created,
and its relative instantiation. It also persists in our scenar-
ios. For instance, according to the example just discussed
in the dynamic auxiliary domain concepts pattern, once
we create the new Repository dynamic entity, we must
consequently define a reference type to connect it to the
Sources instances.

– Element classification pattern: this pattern permits the
organization of dynamically created elements along sub-
typing and inheritance hierarchies. It also persists in our
scenarios. Examples of this pattern can be easily guessed
by looking at the examples given for the type-object
pattern, where new elements were dynamically created
and organized in the existing hierarchy in Fig. 2.

We can conclude that any case study requiring an assessment
process which can be represented by Definition (1) is a good
candidate for realizing a QES by exploiting the approach
proposed in the next section.

III. AUTOMATED MLM-BASED QUALITY ASSESSMENT

This section introduces our approach for the qualitative as-
sessment of subjects that can be represented with our MLM
approach. The pre-requisites for using the proposed approach
have been specified in Section II, where we have identified the
patterns persisting in candidate quality assessment approaches.
In the remainder of this section, we show how an MLM
approach can leverage the definition and implementation of
a QES.

We report the conceptual architecture of our approach
in Fig. 1 and in the following we explore the constituent
components and involved artifacts. In our approach, we use
MultEcore [19], a modeling tool facilitating MLM on top
of EMF (Eclipse Modeling Framework1). The tool allows in
practice the instantiation of unlimited numbers of levels of
abstraction. This means that we can instantiate multiple Ecore
models as instances of other models coming from a more
abstract level. MultEcore exploits text annotations to export the
Ecore files and keep track of: (i) the root model from which
the actual model is instantiated; (ii) the clabjects’ ontological
type coming from the higher levels of the hierarchy; (iii) the
potency values of entities, references and attributes telling for
how many levels they can be instantiated. Since MultEcore
provides a graphical editor based on Sirius2, it is possible to
design models using a graphical representation showing all of
the described annotations with different shapes and colours
(e.g., blue circles for entities types, red boxes for entities
minimum and maximum potencies: an example is shown in
Fig. 2).

A. Multi-Level Subject Definition

On the left hand side of Fig. 1, we have the artifacts involved
in the definition of a subject. These models are represented

1https://www.eclipse.org/modeling/emf/
2https://www.eclipse.org/sirius



Legend

Assessment Subject Model

Smart City Academic
Institute

Region /
Country

(Meta) Modeling language

Smart City
L'Aquila

GSSI 
(University)

Abruzzo
Region

Quality Definition Model

KPIs

KPI selection

evaluated

Quality Evaluation System
(QES)

Dashboards

sync

code
generator

conform to in/out
model transformation

Social
Metrics

Risk
Indicators

Metrics 
selection

Indicators
selection

@0

@1

@2

Fig. 1: Overview of the Multi-Level Quality Assessment Framework.

in the hierarchical organization reported in Fig. 2. Please
note that they are not complete for sake of readability and
understandability.

In this case we have a model for the definition of
Subject that is also reported in Fig. 2 @2. In this
model, a SubjectUnderEvaluationModel can be de-
fined by adding a Subject. The model describes: (i)
which are the Sources (e.g., Stakeholders) of the in-
formation collected about the subject; (ii) the type of the
Data (i.e., StringValue, IntegerValue, RealValue,
BooleanValue); and (iii) how the information is organized
(i.e., DataPackage).

This model can be instantiated at the level @1 for our
case studies. The Subject can be instantiated as different
objects, i.e., SmartCity, Institute, or Region, by
giving place to different models of three different domains,
depending on the subject we want to evaluate. These
three models at level @1 are reported as excerpts, so we
only discuss here the relevant concepts and objects. In
particular, for the smart cities domain, we instantiated the
Source ontological type into three different data sources,
namely ProvidedData, OpenData, SocialMedia.
Moreover, we applied a linguistic extension introducing types
(i.e., PublicInfrastructureLayer, IoTDevice,
Actuator, Sensor) that allow the description of IoT
systems such as MonitoringInfrastructures as data
sources. With regard to the HEIs domain, we assume that the
information is organized w.r.t. the various Departments
of the institute and that they are collected by dedicated

Offices. Meanwhile, for the regional risk monitoring
domain, we assume to have two types of stakeholders,
namely the PublicAdministration and Hospitals.

Level @0 represents real world objects / systems and
in this case, we have defined 3 models (again par-
tially reported). The first on the left-hand side represents
a specific Smart City, i.e., L’Aquila in our running
example. It is worth noting that we defined two data
packages describing two collections of information (i.e.,
CityStatistics, GreenAreas). Besides the definition
of the pure information indicating the CityPopulation
and the TotalGreenArea, we annotated the providers of
these information (i.e., CityCouncil, AtlanteComuni).
In the center of the level @0 we have reported a model
instantiating an institute (model at level @1), i.e., GSSI,
that is the subject for the social impact scenario. Here, we
assume that the information are organized w.r.t. the different
departments (i.e., ComputerScience, UrbanStudies,
Mathematics, AstroparticlePhysics) they describe.
Moreover, the information collected for every department is
about the contents shared on social media by them (e.g.,
MediaCS represents the social media content from the
ComputerScience department). We assume that this type
of data is provided by the Administration office. On the
right, we have the model defining a specific region, i.e., the
Abruzzo region, that is the subject of our assessment for the
COVID scenario. Abruzzo is an instance of Region and
collects information about Healthcare. The data provided
by the AgenziaSanitaria is about the number of COVID



patients recovered in ICU (i.e., Patients) and the total
number of beds in ICU (i.e., BedsICU).

B. Multi-Level Quality Definition

On the right hand side side of Fig. 1, we have the hierarchy
of models used to define the other input of an evaluation
request, i.e., the quality model. This hierarchy is organised in
three levels, depicted in Fig. 3, where @2 defines the abstract
language to define quality models, @1 allows the definition
of different types of models for evaluating different aspects
of quality, e.g., KPIs, social metrics and risk indicators. @0
defines the level for defining models instances of @1, so in
our case we will define a selection of KPIs as well as metrics
for social impacts and risk indicators. We could also consider
that this level allows the definition of models containing all
the possible aspects to be evaluated for an application domain,
thus an additional level may be used to select some of the
metrics with a sort of model slicing technique, to offer a
query-selection on the entire quality model. This would permit
to have a set of complete models, but also the possibility
of selecting a subset of indicators we need for the selected
subject. In detail, in Fig. 3, the model in level @2 provides the
Dimension type to allow the organization of the Metrics
and the input Parameters needed in the calculations. Every
metric is associated to an output Value, that in turn has
a ValueType. This type is specialized in SingleValue
and AggregatedValue. The former is used in asso-
ciation with the parameters of calculations and can be
of different types (i.e., StaticRealValue, RealValue,
IntegerValue). The latter defines the typical operations
that can be used in the metrics calculations (e.g., MAX, AVG)
and can have different types (i.e., AggregatedRealValue,
AggregatedIntegerValue).

At level @1, the described model has three instances, one
for each domain of interest, among those described in Sec-
tion II. In particular, in the KeyPerformanceIndicators
model we instantiated the Kpi type and added other single
and aggregated values (i.e., BoolValue, StringValue,
AggregatedBoolValue, AggregatedStringValue,
AggregatedRangedValue). Also the other two models
at level @1 (i.e., SocialMetrics, RiskIndicators)
are used to specify which types of metrics are used in the
evaluation of the different domains.

We instantiated the models in @1 in level @0, by reporting
the definition of a metric for each domain. In particular, the
GreenAreas model describes how the KPI is calculated
and which parameters it needs (see Equation (2)). Indeed,
we associated to the considered dimension Environment,
the parameters TotalGreenArea and CityPopulation.
And then, we have an aggregated real value DIV associated to
the value of the parameter TGA and another aggregated real
value CEN, that in turn is associated to the other parameter
value CP. We can see that this structure is repeated also
in the other two models (i.e., ContentDistribution,
ICUoccupancy). We have the description of the formulas
used to calculate the metrics through the exploitation of the

aggregated values specifying operations and parameters. This
means that for the green areas KPI, the formula requires a di-
vision (DIV) between the total green area value and 1/100.000
(CEN) of the city population, as reported in Equation (2).

These models at level @0 are passed as parameter to the
implemented QES we described above, with also the relative
models on top of the hierarchy, so the engine can explore the
hierarchical organization vertically by traversing the models.

Lastly, we remark here that, according to the MultEcore
syntax, in both hierarchies in Figs. 2 and 3, red boxes report
the potencies of the corresponding clabjects. In particular,
the first one defines the minimum potency, i.e., from which
level a clabject can be instantiated. The second one, instead,
defines the maximum potency, i.e., up to which level you can
instantiate the clabject. For instance, in the hierarchy in Fig. 2,
the class Source at level @2 is annotated with a potency of
1-2-*, meaning that it can be instantiated from the level below
(i.e., @1) and up to two levels downward (i.e., up to @0).

C. QES Engine

The quality evaluation system that we have implemented is
a model interpreter, able to read the input models, i.e., the
model representing the subject of the evaluation and the quality
definition model, and produce in output an evaluated quality
model. This engine has been implemented in [12] specifically
for the Smart City case study (two-level modeling) and it
is still under development for adapting it to the proposed
MLM approach. This engine works as a model interpreter
parsing the requests and actualizing the results on-the-fly. The
result is based on the required quality model, actualized with
quantitative evaluations, that will be synchronized with a code
generator producing graphical dashboards. These dashboards
(examples are available in Subsection III-D) can be used
to practically inspect and analyze the results for decision
making processes. Actually, the generated dashboards are very
productive and useful since without this representation, the
modeler would manually have to inspect the models to check
the results, resulting in a very cumbersome and error-prone
process. The generation of the dashboards is not part of this
work and the interested reader is kindly referred to [12] for
further details.

The QES in Fig. 1, as already discussed, takes as input two
models, one representing the subject, and the other including
the quality characteristics needed in the evaluation request.
Listing 1 reports a few lines of the QES implemented in
Java + Epsilon Object Language (EOL) [20]. EOL is the core
expression language of the Epsilon framework. EOL is used
as a general-purpose standalone model management language
for automating tasks, in our case manipulating and querying
the models.

1 var root=qm0!EClass.all.selectOne(c|c.name="Root");
2 var qm1packagename =

root.eAnnotations.selectOne(ea|ea.source.
3 matches("om=[A-Za-z]*")).source.split("=").second;
4 var mm=qm1!EPackage.all.selectOne(p|p.name=qm1packagename);
5 var metricclass=

mm.eClassifiers.selectOne(c|c.eAnnotations.source.
6 flatten().includes("type=Metric"));



Subject @2

SmartCity @1 Institute @1 Region @1

L'Aquila @0 GranSassoScienceInstitute @0 Abruzzo @0

Fig. 2: Multi-Level Hierarchy for Subject Definitions.

7 var qm0metric=metricclass.name;
8 ...
9 for (metric in getMetrics(qm0metric)) {

10 ("Calculating..."+qm0metric+"-->"+metric.name).println();
11 var value=metric.getValue(subject);
12 }
13 ...
14 operation getMetrics(qm0metric:String){
15 var metrics=qm0!EClass.all.select(c|c.eAnnotations.
16 source.flatten().includes("type="+qm0metric));
17 return metrics;
18 }
19 ...

Listing 1: Snippet of the EOL-based implementation of the
QES Engine.

This script is invoked from a Java launcher passing as param-
eter all three input models of the three levels @0−@2 of both
side of Fig. 1, for a total of 6 models. For instance the quality
model is loaded by its Root at line 1. The object Root is
a format that MultEcore uses as first instance containing all
the objects in the model. In this script, we navigate the input
models belonging to different levels by using the variables
qm0, qm1 etc, referring to the level in the model’s name.
For instance, the expression qm0!EClass.all will get all
the objects instantiated at level @0 and so on. This model
contains the definition of the KPIs or the SocialMetrics or



QualityEvaluationModel @2

KeyPerformanceIndicators @1 SocialMetrics @1 RiskIndicators @1

GreenAreas @0 ContentDistribution @0 ICUoccupancy @0

Fig. 3: Multi-Level Hierarchy for Quality Definitions.

the RiskIndicators, e.g., GreenAreas, or ContentDistribution
or ICUoccupancy (see Fig. 3—models of level @0). Line 2
loads the package name used by the model at level @0. The
operation of selection at line 3 gets the model at level @1
and it can be seen as a conformance retrieval between the two
levels. In this case, the conformance relationship is persisted
without a strongly typed relation like in two-level modeling
but it is based on annotations, as we will see in the other lines.
Indeed, this model query is executed using regular expressions,
since MultEcore, as anticipated, uses String-based annotations
for dynamic typing. For this reason, at line 4, we retrieve
all the clabjects instantiating the Metrics at level @1. This

operation will get the clabjects for KPIs, RiskIndicators and
SocialMetrics, and whatever is defined at @1 as instance of
metric. This embodies exactly what is defined as Dynamic
auxiliary domain concepts pattern [11]. What is defined at
level @1 as domain-specific metric is retrieved at lines 4 and 5.
Then lines 7–10 applies the calculation for the metrics on the
subject. If we launch this script on the models related to the
case study in Subsection II-A, we receive in output what can
be seen on top of Fig. 4. The console log demonstrates the
dynamic binding of the defined KPIs as instances of Metrics.
The same happens when passing the other models at level @0
in Fig. 3. The operation getValue will actualize the value



by using the defined operation in the given quality model3.
This actualization of the result can be inspected directly in the
model by looking at specific values of the metric (see Value
class in Fig. 3). Examples of results obtained by executing the
QES on the models explained in this section are shown in the
next section.

D. Assessment Result for Running Examples
In this section, we show the results of the assessment of the
three subjects explained in Section II with related assessment
scenarios. In particular, we show some excerpts of the gener-
ated dashboards where the graphical charts support the under-
standing of the performances of the reported metrics. These
dashboards are based on specific model to code transformation,
generating HTML + Javascript files, synchronized with the
@0 models. This means that every time the assessment is
concluded, the dashboards are automatically updated. All these
artifacts are included in a dedicated framework [12] developed
as an Eclipse plugin. Indeed, the Metric has an attribute
called targetvalue that indicates the optimum/desired
value for the corresponding metric w.r.t. which the charts are
generated. The running example in Section II-A has been
applied on the city of L’Aquila, as drafted in the model
in Fig. 2 @0. The result, reported in the generated gauge
(part of the generated dashboard) in Fig. 4, shows the KPI
Green Areas and the result of the measurement for the given
smart city, i.e., 19%. Figure 5 is the result of the generated
dashboard for the social impact scenario, applied to the GSSI
(Gran Sasso Science Institute), Computer Science department,
showing that it performs the 28% of the total social content
distribution. Eventually, in Fig. 6, the generated gauge shows
the evaluation of the COVID risk applied on the Abruzzo
region. The ICU occupancy rate resulted 30% in that specific
time of the assessment. These gauges are part of more complex
dashboards that are automatically generated in sync with the
assessed subject model.

It is worth noting that, although these three assessment
results are quite trivial and might be considered meaningless,
in the context of a wider evaluation (e.g., smart cities rank-
ing, pandemic spreading) they contribute in giving a global
view about the performance of the evaluated subjects. For
instance, according to the three running examples described
in Section II, the calculation of the Green Areas KPI on top
of multiple smart cities would allow them to be ranked in terms
of land use. Measuring the social media content distribution
of multiple departments of a research institute would help to
understand which one contributes the most or the least, if
any, on the social impact of the institute. This information
would help the departments, as well as the institute itself, to
understand their generated impact on the society and where
and how to invest in order to improve their contribution to the
community. Eventually, applying the assessment of the ICU
occupancy rate to multiple regions would allow the monitoring
of the pandemic spread all over the country.

3For further details about the calculus, the interested reader is kindly
referred to [12].

Fig. 4: Excerpt of the Dashboard evaluating Smart City KPIs.

Fig. 5: Excerpt of the Dashboard evaluating Social Impact.

In conclusion, MLM in this case allowed us to work with
different domains in which the subject of the assessment and
the required measurements are different and can be all defined
with our approach. This approach has been demonstrated with
3 of the possible case studies but it can be further applied to
other domains to assess the expressiveness of the approach.

IV. RELATED WORK

In this work, we proposed the quality assessment of different
subjects from three specific domains. However, we can find
some similarities with quality assessment in software engineer-
ing. Indeed, the quality of a software is of relevant importance
since it may affect several aspects, such as human life and
financial loss. These two aspects, in particular, are relevant also



Fig. 6: Excerpt of the Dashboard evaluating COVID Risk.

in our candidate domains, since the related quality assessments
aim to improve people quality of life in different aspects
(e.g., sustainability, economy, health). An example of mea-
surement mechanism for evaluation in software development
is given by the Goal-Question-Metric (GQM) approach by Van
Solingen et al. [21]. It represents a top-down approach based
on goals and models applied to all phases of the software
development process to evaluate the quality of both processes
and products. Specifically, the GQM approach starts from the
definition, by the organization exploiting the approach, of the
goals for itself and its projects. Then, the defined goals must be
traced to the data that operationally define those goals. Lastly,
it provides a framework for interpreting the data with respect
to the stated goals. Thus the resulting measurement model is
organised as a hierarchy made by three levels, namely con-
ceptual (i.e., goal), operational (i.e., question) and quantitative
(i.e., metric). As regard quality evaluation applied in software
engineering (e.g., [22]), we can find several quality models that
present a hierarchical structure, as the one we defined in our
quality model through the insertion of the type Dimension
(Fig. 3). In the software quality assessment context one of
the main issue is the lack of standardization in modeling
software quality metrics, as highlighted by Deissenboeck et
al. [23]. This is due to the fact that the application scenarios
are very heterogeneous. Similarly, we can observe a lack of
standardization in the modeling of quality metrics and their
calculation in all the candidate domains of our scenarios.
Moreover, in the MDE field the quality assessment has to
face the continuous evolution of languages as described by
Ma et al. [24]. This aspect can be reflected in the quality
assessment, due to the evolution of metrics (e.g., new metrics
can appear, existing metrics can be modified especially in
their calculation formulas). For instance, standards defining
KPIs to assess smart cities continuously evolve over time [25],
accordingly to the evolution of cities. Lastly, the readability of
quality models expressed in two-level modeling languages is
typically counter intuitive since they model quality issues and
metrics, which might be difficult to understand (e.g., [26]). Our
QualityEvaluationModel in Fig. 3 aims to overcome

the beforementioned limitations through the exploitation of
MLM and its intrinsic characteristics. Indeed, using MLM
supports both the readability of quality models, due to the
multiple levels of abstractions, as well as the management of
their evolution thanks to the patterns discussed in Section II-D.

In the literature we found several spreadsheets-based ap-
proaches used for quality assessment, also applicable in the
three candidate domains discussed in this work. For instance,
in industrial contexts, spreadsheets are widely exploited for
decision making purposes as made by Abreu et al. [27]. In
this work, the authors highlight the importance of having
spreadsheets of high quality since decisions taken upon wrong
spreadsheets-based assumption may have serious economical
impacts on businesses. The problematic aspect of spreadsheets
quality is highlighted also in the work by Jannach et al. [28]. In
this case, in order to solve the problem, the authors present an
approach of Model-Based Diagnosis of faults in spreadsheets.
Meanwhile, Luckey et al. [29] introduce a new way of object-
oriented modeling to generate and evolve spreadsheets before
using them, in order to reduce error-proneness in spreadsheets-
based approaches. Similarly, Cunha et al. [30] exploit MDE
techniques to build spreadsheets models easy to evolve and
validate. Besides the benefits coming from the exploitation
of MDE techniques in spreadsheets-based QES development,
such types of systems rely on a two-level modeling approach.
This aspect makes them still too specific to their application
domain, thus negatively affecting reusability. The reusability
of QESs is an important feature since, as also shown in the
literature, there are very heterogeneous application domains
for evaluation systems, besides the ones considered in this
paper. Examples of diverse application domains follow. Lee et
al. [31] propose a hierarchical model with financial and non-
financial performance measures to assess and monitor business
performance of employees in a company. In addition Cao et
al. [32] present an approach to design project performance
evaluation systems in a manufacturing company. The aim here
is to help managers in reviewing a project identifying points
that can be improved.

In conclusion, in this work, we show how leveraging MLM
w.r.t. traditional two-level modeling approaches for realizing
QESs, is feasible and may further support evolution and
reusability of quality models and QESs.

V. CONCLUSION

MLM offers advantages with respect to traditional two-level
modeling approaches, in specific cases. This paper presents
a MLM approach for implementing a QES that can be used
in different application domains. We focus on three domains:
smart city KPIs assessment, research institute social impact,
and COVID risk impact evaluations. The presented approach
has been implemented as a prototype and future work will be
dedicated to adapt and migrate the current two-layer modeling
approach and related engine to the proposed multi-level one.
Moreover, since the approach is fully automated, we need
to test it with a larger number of subjects and requested
evaluation parameters. Eventually, we are also interested in



exploring such kind of frameworks, which we call multi-
level frameworks. It seems they allow one to benefit from
the advantages of specific frameworks developed for one
metamodel (customization) as well as from the advantage
from general frameworks (e.g., consider model transformation
frameworks as a prominent example) which are applicable to
all metamodels (reuse at scale).

ACKNOWLEDGMENT

This work was partially supported by the Centre for Urban
Informatics and Modelling - National Project - GSSI, the
PON (Programma Operativo Nazionale Ricerca e Innovazione)
projects, AIM1880573 Cultural Heritage and Smart, Secure
and Inclusive Communities - National Projects - GSSI, the
Austrian Federal Ministry for Digital and Economic Af-
fairs and the National Foundation for Research, Technology
and Development (CDG), and the Austrian Science Fund
(P 30525-N31).

REFERENCES

[1] M. Azuma, “Software products evaluation system: quality models,
metrics and processes—International Standards and Japanese practice,”
Information and Software Technology, vol. 38, no. 3, pp. 145–154, 1996.

[2] O. Gordieiev, V. Kharchenko, N. Fominykh, and V. Sklyar, “Evolution
of Software Quality Models in Context of the Standard ISO 25010,” in
Proceedings of the Ninth International Conference on Dependability and
Complex Systems (DepCoS-RELCOMEX). Springer, 2014, pp. 223–232.

[3] J. Garcı́a-Munoz, M. Garcı́a-Valls, and J. Escribano-Barreno, “Improved
metrics handling in SonarQube for software quality monitoring,” in Pro-
ceedings of the 13th International Conference on Distributed Computing
and Artificial Intelligence (DCAI). Springer, 2016, pp. 463–470.

[4] F. Basciani, J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio, “A
tool-supported approach for assessing the quality of modeling artifacts,”
Journal of Computer Languages, vol. 51, pp. 173–192, 2019.

[5] M. F. van Amstel and M. van den Brand, “Quality assessment of
ATL model transformations using metrics,” in Proceedings of the 2nd
International Workshop on Model Transformation with ATL (MtATL),
2010.

[6] T. Ambrus and M. Tóth, “Tool to Measure and Refactor Complex UML
Models,” in Proceedings of the Fifth Workshop on Software Quality
Analysis, Monitoring, Improvement, and Applications (SQAMIA), 2016.

[7] M. Cardarelli, L. Iovino, P. Di Francesco, A. Di Salle, I. Malavolta, and
P. Lago, “An extensible data-driven approach for evaluating the quality
of microservice architectures,” in Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, 2019, pp. 1225–1234.

[8] M. De Sanctis, L. Iovino, M. T. Rossi, and M. Wimmer, “A flexible
architecture for key performance indicators assessment in smart cities,”
in Proceedings of the European Conference on Software Architecture
(ECSA). Springer, 2020, pp. 118–135.

[9] Science Communication Unit, UWE, Bristol., “Science for Environment
Policy. Indicators for sustainable cities,” April 2018, in-depth Report 12.
Produced for the European Commission DG Environment. Available at:
https://bit.ly/3aMjgMK.

[10] F. Macı́as, “Multilevel modelling and domain-specific languages,” 2020.
[Online]. Available: https://arxiv.org/abs/1910.03313

[11] J. De Lara, E. Guerra, and J. S. Cuadrado, “When and how to use
multilevel modelling,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 2,
2014.

[12] M. De Sanctis, L. Iovino, M. T. Rossi, and M. Wimmer, “MIKADO
– A Smart City KPIs Assessment Modeling Framework,” Software &
Systems Modeling, 2021.

[13] International Telecommunication Union (ITU), “Collection Method-
ology for Key Performance Indicators for Smart Sustainable
Cities,” 2017, https://www.unece.org/fileadmin/DAM/hlm/documents/
Publications/U4SSC-CollectionMethodologyforKPIfoSSC-2017.pdf.

[14] P. Bosch, S. Jongeneel, V. Rovers, H.-M. Neumann, M. Airaksinen,
and A. Huovila, “Citykeys indicators for smart city projects and smart
cities,” 2017, available at: https://nws.eurocities.eu/MediaShell/media/
CITYkeystheindicators.pdf.

[15] M. Anzivino, F. A. Ceravolo, and M. Rostan, “The two dimensions of
italian academics’ public engagement,” Higher Education, vol. 82, no. 1,
pp. 107–125, 2021.

[16] L. Compagnucci and F. Spigarelli, “The third mission of the university:
A systematic literature review on potentials and constraints,” Technolog-
ical Forecasting and Social Change, vol. 161, p. 120284, 2020.

[17] B. Gregersen, L. T. Linde, and J. G. Rasmussen, “Linking between
danish universities and society,” Science and public policy, vol. 36, no. 2,
pp. 151–156, 2009.

[18] Ministero della Salute, “Tabella 21 indicatori,” 2020, https://www.salute.
gov.it/imgs/C 17 notizie 5152 1 file.pdf.

[19] F. Macı́as, A. Rutle, and V. Stolz, “MultEcore: Combining the Best of
Fixed-Level and Multilevel Metamodelling,” in Proceedings of the 3rd
International Workshop on Multi-Level Modelling (MULTI), ser. CEUR
Workshop Proceedings, vol. 1722, 2016, pp. 66–75.

[20] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The Epsilon Transfor-
mation Language,” in Proceedings of the International Conference on
Theory and Practice of Model Transformations (ICMT). Springer, 2008,
pp. 46–60.

[21] R. Van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, “Goal
Question Metric (GQM) approach,” Encyclopedia of software engineer-
ing, 2002.

[22] D. Samadhiya, Su-Hua Wang, and Dengjie Chen, “Quality models: Role
and value in software engineering,” in Proceedings of the 2nd Interna-
tional Conference on Software Technology and Engineering (ICSTE),
2010, pp. 320–324.

[23] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner, “Software
quality models: Purposes, usage scenarios and requirements,” in Pro-
ceedings of the ICSE Workshop on Software Quality, 2009, pp. 9–14.

[24] Z. Ma, X. He, and C. Liu, “Assessing the quality of metamodels,”
Frontiers of Computer Science, vol. 7, p. 558–570, 2013.

[25] M. Hara, T. Nagao, S. Hannoe, and J. Nakamura, “New key performance
indicators for a smart sustainable city,” Sustainability, vol. 8, no. 3, p.
206, 2016.

[26] F. D. Giraldo, S. España, O. Pastor, and W. Giraldo, “Considerations
about quality in model-driven engineering,” Software Quality Journal,
vol. 26, pp. 1–66, 2016.

[27] R. Abreu, J. Cunha, J. Fernandes, P. Martins, A. Perez, and J. Saraiva,
“Smelling Faults in Spreadsheets,” in Proceedings of the 30th Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
2014, pp. 111–120.

[28] D. Jannach, T. Schmitz, and K. Schekotihin, “Toward interactive spread-
sheet debugging,” in Proceedings of the First Workshop on Software
Engineering Methods in Spreadsheets, 2014, pp. 3–6.

[29] M. Luckey, M. Erwig, and G. Engels, “Systematic evolution of model-
based spreadsheet applications,” Journal of Visual Languages & Com-
puting, vol. 23, p. 267–286, 10 2012.

[30] J. Cunha, J. Fernandes, J. Mendes, and J. Saraiva, “Embedding, evolu-
tion, and validation of model-driven spreadsheets,” IEEE Transactions
on Software Engineering, vol. 41, pp. 241–263, 03 2015.

[31] H. Lee, W. Kwak, and I. Han, “Developing a business performance
evaluation system: An analytic hierarchical model,” The Engineering
Economist, vol. 40, no. 4, pp. 343–357, 1995.

[32] Q. Cao and J. J. Hoffman, “A case study approach for developing a
project performance evaluation system,” International Journal of Project
Management, vol. 29, no. 2, pp. 155–164, 2011.


