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Abstract. The automatic Key Performance Indicators (KPIs) assessment for smart
cities is challenging, since the input parameters needed for the KPIs calcula-
tions are highly dynamic and change with different frequencies. Moreover, they
are provided by heterogeneous data sources (e.g., IoT infrastructures, Web Ser-
vices, open repositories), with different access protocol. Open services are widely
adopted in this area on top of open data, IoT, and cloud services. However, KPIs
assessment frameworks based on smart city models are currently decoupled from
open services. This limits the possibility of having runtime up-to-date data for
KPIs assessment and synchronized reports. Thus, this paper presents a generic
service-oriented middleware that connects open services and runtime models, ap-
plied to a model-based KPIs assessment framework for smart cities. It enables a
continuous monitoring of the KPIs’ input parameters provided by open services,
automating the data acquisition process and the continuous KPIs evaluation. Ex-
periment shows how the evolved framework enables a continuous KPIs evalua-
tion, by drastically decreasing (∼88%) the latency compared to its baseline.

Keywords: Models@run.time · Continuous Monitoring · Smart Cities Assess-
ment.

1 Introduction

The Smart Cities (SCs) ecosystem is an ideal ground for service-based applications,
where the role of Service-Oriented Architecture (SOA) is to enable the integration be-
tween city services to realize innovative services and applications (e.g., [1, 2]). Particu-
larly, we focus on the smart governance [3] process within SCs, concerning the use of
technology in processing information and supporting smart decision making. Specifi-
cally, it exploits Key Performance Indicators (KPIs) assessment to measure qualitative
metrics over cities to support their smart and sustainable growth3. For instance, the In-
ternational Telecommunication Union (ITU) defined a list of all the KPIs for Smart Sus-
tainable Cities, along with its collection methodology [4]. The KPIs assessment process
involves different tasks, e.g., retrieving input data, calculating indicators, and report-
ing evaluation results. Traditional approaches, e.g., manual or spreadsheet-based ap-
proaches4, envisage a significant human contribution to perform such operations, with
expensive and repetitive activities requiring resources and time to be performed.

Enabling automation in the KPIs assessment to both the retrieval of input data and
calculation of KPIs, is not trivial, since the input parameters needed for the calcula-
tions may come from different types of data sources (e.g., IoT infrastructure, open data
3 https://bit.ly/3ekdT9D 4 https://bit.ly/37EFR9r



repositories or statistics elaborated by public entities) in different formats. Moreover,
the values of the input parameters can change periodically (e.g., hourly), and thus, the
KPIs assessment process has to be synchronized and re-assessed accordingly.

On the one hand, Web services and APIs, i.e., the most common way to specify
open services in the SC domain, are widely adopted to build new applications on top
of open data, IoT, and cloud services. On the other hand, model-based approaches are
exploited in the SC domain, i.e., to represent complex systems through abstract mod-
els [5]. However, despite the huge availability of SC services and models, they are
currently not well-connected, which would be required to reach the notion of a digi-
tal twin [6]. Moreover, the currently available frameworks for the KPIs calculation are
mainly online spreadsheets5, which are far from being automated, and Web-based ap-
plications (see, e.g., [7]) only providing a fixed set of predefined KPIs. In our previous
work [8], we presented a flexible and automated model-based approach for KPIs as-
sessment in SCs. However, the research efforts in [8] have focused on the definition
of the model-based artifacts of the framework, while ignoring the relationship with the
independent and heterogeneous data sources providing KPIs input parameters and the
constant synchronization with them. Thus, in [8] the input parameters values have to be
manually retrieved and updated in the models.

With these premises, we developed a generic service-oriented middleware that con-
nects open services and runtime models. Specifically, we evolve the architecture in [9]
of our approach in a service-oriented fashion, by means of the message-oriented middle-
ware enabling: (i) continuous monitoring of KPIs input parameters from heterogeneous
sources available as (open) services, and (ii) runtime models evolution with up-to-date
input parameters for the SC modeling artifacts, in accordance with the real-world SCs
evolution reflected by the open services. In other words, we provide a generic solution
for monitoring runtime model parameters from open services for SCs models. Thus, we
turn SC models into digital twins, by weaving open services and the runtime models,
allowing the automated information flow from the system to the model [6].

The rest of the paper is organized as follows: background and motivation for this
work are discussed in Section 2. Section 3 presents the proposed approach. Evalua-
tion results of the implemented prototype are reported in Section 4. Finally, Section 5
discusses the related work and draws conclusions and future directions.

2 Background and Motivation

In this section, we describe the assessment process realized by the smart cities KPIs
modeling framework from [8], its limitations, and the challenges we aim to address.

2.1 A Smart Cities KPIs Assessment Framework

Fig. 1 depicts the overall KPIs evaluation approach consisting in four main phases, each
with dedicated input and output elements. The assessment of a SC starts from the SC
Modeling phase, during which the city under evaluation is modeled, by means of MDE
techniques. In the SC Model, SCs are designed in terms of their stakeholders (e.g., mu-
nicipality), infrastructures (e.g., IoT infrastructures), data sources (e.g., open data, IoT
services) and data types. This way, the SC Model provides the input parameters needed
to calculate the KPIs of interest, as we will see in the following. In the KPIs Definition
phase, by following KPIs Guidelines/Documentation (e.g., [4, 7]), the user models or
select the relevant KPIs for the SC under evaluation (e.g., Air Pollution KPI, Travel
Time Index KPI). In the KPIs Model given as output, the calculation formulae of the
5 https://bit.ly/3dT1zwV



selected KPIs are defined by using a textual Domain-Specific Language (DSL) [10].
The designed SC Model and KPIs Model, are the inputs for an evaluation engine that
executes the KPIs Assessment over the candidate SC. The assessment phase returns an
Evaluated KPIs Model reporting the KPIs concrete values resulted from the assessment.
The Evaluated KPIs Model, in turn, is the input of the KPIs Visualization phase during
which Dashboards representing the KPIs status are generated, through code generation.

Fig. 1: KPIs assessment: process overview.

In the following, we give a trivial
but concrete example of a KPI evaluated
for a smart city, as done in [8]. Specifi-
cally, we consider the KPI Air Pollution
(AP) that measures the air quality based
on the values reported for specific pol-
lutants [4]. It is based on the Air Qual-
ity Index (AQI) formula, calculated as in
(1), where p refers to the pollutant (e.g.,
PM2.5) whereas the legal limit is estab-
lished by the law:

AQIp = (measured concentrationp/legal limit)× 100 (1)

The worst AQIp (i.e., the greater) determines the Air Pollution AP KPI, which is eval-
uated w.r.t. five evaluation classes, i.e., Excellent, Good, Discrete, Bad, Terrible. To
calculate the AP KPI we need, as input parameters, the measured concentrations of
the required pollutants. These values are provided by the SC Model together with the
data sources from which they have been collected, e.g., the Breezometer open API6. An
excerpt of the SC model of the smart city of L’Aquila is depicted in Fig. 2. It shows
the tree-view of the model as shown in the Eclipse Modeling Framework (EMF)7, on
top of which the assessment framework has been designed. Fig. 2 also shows an ex-

Fig. 2: Excerpts of the smart city model designing the city of L’Aquila.

cerpt of the tree-view of the KPIs Model where the AP KPI formula is nested into the
Aggregated Ranged Value. The corresponding textual representation through
the provided DSL [8] can be found in our online repository8. It is important to notice
that, in the KPI definition, the names of the parameters whose values are provided by
the SC Model must conform. This match will be executed by the evaluation engine dur-
ing the assessment. Fig. 2 eventually shows the Property View reporting the AP KPI
Actualized Value before and after the assessment, i.e., Good.

6 https://www.breezometer.com/ 7 https://bit.ly/3lc1GHG
8 https://github.com/iovinoludovico/runtime-kpi-assessment



2.2 Limitation and Challenges

In the selected framework, the KPIs assessment process envisages the involvement of
the users (e.g., KPIs experts) not only in the initial design of the required models but
also in the manual retrieving of the KPIs input parameters. This means that the user has
to manually fill the SC model every time the KPIs input parameters change, and then
trigger the re-execution of the KPIs assessment process. These manual tasks are time-
consuming and error-prone. Moreover, some KPIs input parameters are highly dynamic,
since they change with very different frequencies (e.g., monthly, hourly). For instance,
data about pollutants concentrations can be collected every hour or even minutes. Lastly,
KPIs input parameters are provided by a multitude of heterogeneous sources, such as
IoT sensors, social media, open data, usually available and accessible as (open) APIs
and services. Given the discussion above, we can identify the following challenges:
(C1) The framework must guarantee a continuous and possibly automated monitoring
of KPIs parameters sources, i.e., services, and runtime update of the models using these
parameters. (C2) The framework must provide real-time evaluated KPIs, i.e., as much
up-to-date as possible w.r.t. the current status of the smart city, given that KPIs support
and affect the decision-making processes in smart cities. For these reasons, we believe
that our approach can benefit from a service-oriented continuous monitoring feature,
providing automatic gathering of data and runtime models updates (i.e., SC models),
enabling the dashboards synchronization.

3 Runtime Model Updates by Continuous Monitoring

The architecture [9] behind our previous framework [8] was focused on the assessment
phase, thus keeping the gathering of data and the consequent models update as manual
tasks. To address the challenges discussed above and overcome the current limitations
of the framework, we refactored and extended its architecture by adding a message-
oriented middleware enabling continuous monitoring of KPIs data sources and runtime
update of models in the KPIs assessment for SCs, as shown in Fig. 3. This extension
evolves the manual and standalone framework into an automatic and service-oriented
one, where heterogeneous data sources continuously feed the assessment process.

In the front-end, we have the KPIs Modeling Editor (implemented with Xtext9)
devoted to the selection and definition of the relevant KPIs for the SC under evaluation,
through custom textual DSLs. The Smart City Modeling Editor [11] (implemented
with Sirius [12]), instead, helps users to model the SC under evaluation through the ex-
ploitation of graphical functionalities [11]. Lastly, the graphical Dashboard, obtained
through model to code transformations (and visualized with Picto10) allows the inter-
pretation of the KPIs assessment results.

In the back-end, the Requests Manager handles: (i) KPIs assessment requests to
the Evaluation Engine (modeled with the Epsilon Object Language11) that is respon-
sible for performing the SC evaluation; (ii) visualization requests from the Evaluation
Engine to the Dashboard component. In particular, the Dashboard Synchronizer
converts the KPIs model instantiated after the assessment in an HTML file, which is in
sync with source files of the Dashboard. The synchronizer has its own listener that every
time the model changes the HTML file is reloaded, updating the views. The Requests
Manager also handles requests to the Models Manager to gather or store the models
needed in the KPIs assessment process. The models manager handles the persistence of
models in the SC Models Repository and the KPIs Models Repository.
9 https://www.eclipse.org/Xtext/ 10 https://bit.ly/3l8jL9s
11 https://www.eclipse.org/epsilon/doc/eol/
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Fig. 3: The service-oriented architecture for the continuous KPIs
assessment of SCs. The arrows shape the data-flow among com-
ponents. White and blurred grey components show the architecture
from [9], where the blurred grey ones required modifications for
this work. In grey, instead, the newly integrated components.

We now describe the
new components and the
message-oriented mid-
dleware. The Publishers
and the Subscriber im-
plement the classic pub-
lish/subscribe communi-
cation pattern based on
Topics. The type of top-
ics are the types of
parameters the SC can
handle in the evalu-
ation, e.g., pollutants,
travel time, and so on.
Specifically, the Pub-
lisher components can
be multiple, consider-
ing the multiple data
sources. They send calls
to data sources, e.g., open
services, to gather the
input parameters needed
for the KPIs calcula-
tions. Each publisher pre-
pares the data, before

publishing changed parameters on the assigned topic. These components are interfaces
implemented, in turn, by specific Java classes.

The topics are published as MQTT [13] messages with a specific structure, namely
lat/{latitude}/long/{longitude}/parameter, allowing multi-city evaluation. Lati-
tude and longitude are the GPS coordinate of the smart city under evaluation. This
way we can provide multiple publishers as types of data gatherer for different cities,
by matching the smart cities coordinates. Then, the subscriber is able to distinguish
which data intercept, by using the latitude and longitude of the smart city under eval-
uation. The Subscriber is devoted to the synchronization of the models with the data
sources. It receives changed parameters through the subscription to the corresponding
topic and actions can be triggered, as specified in the following. The Runtime Model
Injector is invoked by the Subscriber, when it receives new data from the topics, and
devoted to the retrieving of the SC models that need to be synchronised. It checks if
the input parameters in the models are in line with the ones received by the Subscriber
by querying the model. It is also in charge of SC models update, that is the operation
of filling the models with the received up-to-date data, through EOL queries. Further-
more, the Runtime Model Injector interacts with the Requests Manager to trigger
the KPIs assessment process due to changed input parameters, requesting the last saved
SC models. The overall monitoring process is enabled by the user that is responsible
for setting up the continuous monitoring features, only for the dynamic parameters with
the runtime attribute set to TRUE in the SC model, through the Settings Interface. It
is used for defining the topics to which the Subscriber has to subscribe, and configure
the APIs and the frequency with which they must be called in the Publishers. This set-
ting is provided through a name based convention, so if the parameters in the SC model
are included in the topics, then the Runtime Model Injector will consider them in the
process.



It is worth noting that after converting the architecture of our framework in a service-
oriented one, enabling continuous monitoring and runtime models update, the assess-
ment approach can be enhanced in a models@runtime evaluation. Lastly, if new KPIs
are modeled, to monitor their input parameters it suffices to add new publishers accord-
ing to provided templates and connect them with parameters names in the SC Model.

4 Implementation and Evaluation

We demonstrate the evolved approach through a running example, by applying the ex-
tended evaluation framework over a real smart city, i.e., L’Aquila. Specifically, we con-
sider 6 dynamic KPIs and four Publishers as data sources for the input parameters of
these KPIs, i.e., 3 open services and an IoT infrastructure. Details can be found in
our online repository12. We experimentally assess the service-based continuous KPIs
assessment and compare it with its previous version where the KPIs parameters contin-
uous monitoring and runtime models update were not available.

Research Question (RQ). We aim to answer the following RQ: What is the impact
of KPIs input data retrieving, models update and evaluation engine execution tasks on
the latency? How does the presented approach compare with its baseline [9] w.r.t. the
impact to latency of these tasks?

Experiment Setup. To answer to RQ, we have conducted an experiment by com-
paring the baseline framework proposed in [9], requiring manual data retrieving and
models filling, with the fully automated framework, enabling continuous monitoring
and runtime models update presented in this paper. We consider one subject smart city
and 6 dynamic KPIs. For this experiment, the framework run on a Macbook Pro 2019,
2,3 GHz 8-Core Intel Core i9 processor, 32 GB 2667 MHz DDR4 RAM and 2TB SSD
of storage. This laptop runs the Mosquitto client, all the publishers, the subscriber and
the evaluation engine. We run the experiment for 6 hour. Anytime (and only when) the
SC Model is not up to date, the subscriber updates the parameters in the model with
the new received values and it runs the evaluation engine that triggers the dashboard’s
update. All these activities have been automatically monitored and measured in a log.

Results for RQ. Table 1 shows to which extent the data retrieving, SC Model up-
date and evaluation engine execution contribute to the framework latency, in both the
Automated and Baseline Exps. Specifically, Table 1 reports the average execution time

Approach Data Retrieving SC Model Update Evaluation Engine
Baseline 14.929,89 ms 18.668,28 ms 6.605,22 ms
Automated 525,89 ms 2,96 ms 138,82 ms

Table 1: Latency contributed by the three phases.

for each of the three phases in milliseconds (ms), for both Exps. As expected, each of
the three phases requires quite more time in the Baseline Exp, where the data retrieving
and model update (performed manually) are the most time consuming ones. Moreover,
the latency in the Baseline Exp could also depend from communication issues among
the users involved in the monitoring of data sources and update of the models. The eval-
uation engine execution also contributes more to the latency in the Baseline Exp, since
it has to be manually launched anytime changes are applied in the SC Model due to the
evolution of the KPIs input parameters.
Discussion. Current limitations concern the generalizability and scalability of the ap-
proach. Although it has been applied on a single smart city to evaluate 6 KPIs, it uses

12 https://github.com/iovinoludovico/runtime-kpi-assessment



techniques (e.g., PubSub pattern, open APIs) that can be generalized and extended to
more complex systems, as long as there are accessible data sources to get real input
parameters for dynamic KPIs to be measured on real smart cities. Indeed, PubSub is
known to offer better scalability w.r.t. traditional client-server, by means of parallel op-
eration and message caching. Of course, the message-oriented middleware might add
a network latency delay. However, keeping the data retrieving and update of models as
manual tasks is impractical, considering the huge number of identified KPIs.

5 Related Work, Conclusion, and Future Work

Several SCs architectures can be found in the literature [14]. Matar et al. [15] present
an approach for designing smart city’s ecosystems, by means of a reference architec-
ture (RA), SmartCityRA, by exploiting model-driven architecture techniques. Voronin
et al. [16], propose an RA for designing a smart city context through the use of Big
Data. However, both approaches [15, 16] do not support SCs evaluation.

The currently available frameworks for the KPIs calculation are still far from be-
ing automated. Manual and online spreadsheets are not appropriate for dynamic data
retrieving. Among Web-based framework, Bosch et al. [7] select a set of KPIs to assess
SCs to measure their smartness and to visualize them with graphical representations.
However, the tool does neither envisage automatic calculation nor retrieving of data.
Moustaka et al. [17] present a framework to support maturity benchmarking of SCs.
However, it lacks continuous monitoring and automatic injection of data.

Run-time monitoring (RM) and models@runtime [18] have been widely exploited
in model-based systems and applications. Hili et al. [19] propose an architecture sup-
porting RM of executions of models of real-time and embedded systems. In their case
studies they connect the code generated from a model with a range of external tools
for different purposes (e.g., run-time verification). While they apply RM on model arti-
facts, we monitor heterogeneous third-party data sources, to dynamically update model
artifacts (i.e., the SC Model). Other approaches exploiting RM are proposed in the IoT
context, to support the management of its inherent heterogeneity, as done, for instance,
in Chen et al. [20]. Differently, we aim to apply continuous monitoring both to IoT
architectures and to other data sources (e.g., Open services), with diverse architectures
and access protocols. This further increases heterogeneity beyond that inherent in IoT
architectures. In service-based systems, Johng et al. [2] propose a continuous service
monitoring framework to control changes in services by detecting SLA’s violations, to
facilitate collaborations among DevOps software teams. Differently, our framework is
not just a notification system but integrates a complete SC assessment.

Nevertheless, despite the availability of numerous smart cities services, and the wide
use of models@runtime and service-based technologies, to the best of our knowledge,
it does not exist a service-oriented framework for the continuous evaluation of SCs.

In conclusion, we presented a service-oriented architecture for a model-based KPIs
assessment framework supporting decision-making processes in SCs, and providing a
robust and fully automated platform. As future work, we aim to integrate time-series
databases [21] enabling temporal models to support the storing of historical values.
This way, we may store the history of the input parameters and time-based analysis
of the KPIs result, which can be used to visualize the evolution of the smart city and
its performance over time. Lastly, we aim to deploy the framework online as a Web
application. This way, the framework would become itself a smart city service provider.
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