
Enacting Emergent Configurations in the IoT through
Domain Objects

Fahed Alkhabbas1,2, Martina De Sanctis3, Romina Spalazzese1,2

Antonio Bucchiarone3, Paul Davidsson1,2, Annapaola Marconi3,

1 Department of Computer Science and Media Technology, Malmö University, Sweden
2 Internet of Things and People Research Center, Malmö University, Sweden

{fahed.alkhabbas,paul.davidsson,romina.spalazzese}@mau.se
3 Fondazione Bruno Kessler, Via Sommarive, 18, Trento, Italy,

{bucchiarone,msanctis,marconi}@fbk.eu

Abstract. The Internet of Things (IoT) pervades more and more aspects of our
lives and often involves many types of smart connected objects and devices.
User’s IoT environment changes dynamically, e.g., due to the mobility of the user
and devices. Users can fully benefit from the IoT only when they can effortlessly
interact with it. To accomplish this in a dynamic and heterogenous environment,
we make use of Emergent Configurations (ECs), which consist of a set of things
that connect and cooperate temporarily through their functionalities, applications,
and services, to achieve a user goal. In this paper, we: (i) present the IoT-FED ar-
chitectural approach to enable the automated formation and enactment of ECs.
IoT-FED exploits heterogeneous and independently developed things, IoT ser-
vices, and applications which are modeled as Domain Objects (DOs), a service-
based formalism. Additionaly, we (ii) discuss the prototype we developed and the
experiments run in our IoT lab, for validation purposes.

1 Introduction

Since the technology becomes more and more affordable and connectivity widespread,
most objects and devices that would gain from being connected to the Internet are being
connected. We refer to the (possibly smart) devices and connected objects as things [1,
2]. Big market players, e.g., Ericsson1, foresee that in the coming years, things will
form large heterogeneous and highly distributed systems. As a result, the Internet of
Things (IoT) will pervade and potentially improve many aspects of our lives.

From a user perspective, the IoT environment changes dynamically, e.g., when the
user moves or due to mobile devices. Given the high diversity of things dynamically
available in different and often unknown places, it is not feasible to define a priori all
the possible combinations of things to reach specific user goals. Additionally, users can
fully benefit from the IoT only when they can effortlessly interact with the dynamically
available things to satisfy their goals. To accomplish this, a significant engineering ef-
fort is needed to abstract from the low-level interactions with the things. To this aim, we

1 https://www.ericsson.com/res/docs/2015/mobility-report/ericsson
mobility-report-nov-2015.pdf



2 F. Alkhabbas et al.

make use of Emergent Configurations (ECs), which consist of a set of things that con-
nect and cooperate temporarily through their functionalities, applications, and services,
to achieve a user goal [1, 2].

In this paper, we present (i) IoT-FED: an approach for Forming and enacting Emer-
gent configurations through Domain objects in the IoT. It exploits heterogeneous and
independently developed things, IoT services, and applications modeled as Domain
Objects (DOs), a service-based formalism [3]. Specifically, we present a process and an
architecture realizing IoT-FED by leveraging an IoT platform, and a developer guide-
line. Additionally, we present (ii) a prototype we developed for validation purposes. The
prototype is used to run experiments on two scenarios: one including (real/hardware)
things is realized in our IoT lab2 and the other where the hardware is simulated.

ECs are goal driven IoT systems, i.e., a user goal is the main driver to form and
enact an EC. In this paper we assume that: (A1) ECs are formed and enacted within
well-defined spatial boundaries (e.g., a room, a building). Therefore, we envision the
number of things that might potentially form an EC to be in the scale of hundreds. This
remarkably mitigates the well-known scalability issue in the IoT [4]. (A2) ECs achieve
non-time critical user goals, i.e., ECs are formed and enacted within the time scale of
seconds. (A3) ECs can be successfully formed and enacted, i.e., some needed things
and services to achieve the goal are available and working until it is reached. Enabling
the automated adaptation of ECs is out of the scope of this paper.
The Adjust Light Scenario. A concrete example of IoT systems we deal with is the
Adjust Light (AL) Scenario that we will use throughout this paper.
(AL-office) Lara enters an office which is equipped with several IoT things including
light sensors, and connected curtains and lights. The things, with their functionalities,
are configured to be controllable by people in the office. Preparing for a meeting, she
requests as goal to increase the light level using an application running on her smart-
phone. An EC formed by her smartphone, a light sensor, connected curtain and light is
enacted to achieve her goal. The light sensor measures the light level in the room, the
light is turned on and the curtain is partially opened. We realized this scenario, including
both its hardware and software, in our IoT lab.
(AL-hotel) Lara enters a hotel room which is equipped with three light sensors, con-
nected curtain and two connected lamps. The things, with their functionalities, are con-
figured to be controllable by guests living in the room. Using the same application
running on her smartphone, Lara expresses her goal to decrease light level in the room.
Given that the curtain is closed, an EC formed by her smartphone, one of the light sen-
sors and the two lamps is enacted to reach her goal. The light sensor measures the light
level in the room, one of the two lamps is turned off and the light intensity level of the
second lamp is reduced.

To realize the AL-scenario we leverage the Amazon AWS-IoT platform3, which
provides RESTful and publish-subscribe based APIs.

The remainder of the paper is organized as follows. Section 2 describes background
notions of DOs. Section 3 illustrates IoT-FED in terms of its process, architecture, and a
guideline. Section 4 presents the AL-office Scenario realized including hardware things,
and the (software) prototype at work. Section 5 illustrates the validation of IoT-FED. In

2 http://iotap.mah.se/lab/ 3 https://aws.amazon.com/iot/



Enacting Emergent Configurations in the IoT through Domain Objects 3

Section 6 lessons learned are discussed. Section 7 surveys related works and Section 8
concludes the paper and draws future research directions.

2 Background on the Domain Object Model

The Domain Object model is the building block of a design for adaptation approach [3].
It allows to define independent and heterogeneous things and services in a uniform
way, allowing developers to work at an abstract level without need to deal with the
heterogeneity of things and protocols. In this section, we report the main features of the
DO model that support the ECs formation and enactment, while other details can be
found in [3, 5].

The intuition behind the DO model is to separate what a system is designed to do
(e.g., adjust the light level) from how to do it (e.g., by combining available light sensor
S and actuators A1 and A2). The how can vary in different execution contexts since
can be provided by disparate things dynamically available. The AL scenario highlights
a high degree of heterogeneity in terms of: types of things (e.g., sensors, actuators,
smartphones) and their protocols (e.g., communication, data, infrastructure).

Things can be wrapped as DOs, e.g., by applications developers. This is done una
tantum. After its wrapping, a thing is seamlessly part of the framework and exploited for
the dynamic formation and enactment of ECs. In Figure 1, we provide a partial overview
of the DOs model of the AL Scenario. Each DO implements a specific

Fig. 1: Adjust Light Scenario: a partial overview of
the DOs model of the system.

domain property which models a
thing capability. For instance, the
light sensing property models
the light sensing capability of a light
sensor. Each DO has a core process
which defines its behavior. In addi-
tion, it exposes one or more frag-
ments (e.g.,checkActuatorsSta-
tus and handleActuators) which
describe the functionalities it pro-
vides. Both core process and frag-
ments are modeled as processes,
by means of the Adaptive Perva-
sive Flows Language (APFL) [5].
Furthermore, each DO has do-
main knowledge, which represents
its view on the environment in
which it is. A DO’s domain knowl-
edge consists of: (i) internal knowl-
edge that is the domain concept
it implements e.g., the Actuators

management in the Actuators

Manager; (ii) external knowledge
that is domain concepts it requires



4 F. Alkhabbas et al.

for its execution e.g., the Lamp actuating and Curtain actuating provided by
other DOs.

Domain concepts are modeled as State Transition Systems (STS) [5]. The execution
of fragments and core process of a DO updates STS state in its knowledge. Domain-
specific concepts (e.g., light sensing) are usually implemented by DOs wrapping real
things (e.g., sensors, actuators). General-purpose concepts (e.g., adjust light level), in-
stead, might be realized by defining value-added DOs (e.g., a DO modeling the AL
application of our scenario), which exploit the functionalities provided by the domain-
specific ones.

Unlike traditional services, APFL allows the partial specification of the expected
behavior of a DO by defining abstract activities: activities which the DO requires but it
does not implement by itself. They are defined only in terms of a goal (e.g., sense the
light). At runtime, the execution of abstract activities is performed through a specializa-
tion process, also called refinement mechanism. It allows abstract activities to be refined
according to the fragments offered by other DOs, whose execution allows the abstract
activity’s goal to be reached. The so called Higher Order Abstract Activities (HOAA)
enable a higher level of abstraction. They are used to dynamically generate abstract
activities deriving from a performed reasoning activity, as explained in Section 4.2.

It is important to notice that fragments can be partially specified, too. Thus, they
can also contain abstract activities. This enables a chain of refinements that we will
detail in Section 4.2. The abstract activity refinement mechanism we deal with in this
paper is performed through the application of advanced techniques for the dynamic and
incremental service composition based on AI planning [5]. The AI planner takes as
input the abstract activity’s goal, the available fragments, the domain properties defined
in APFL, and it returns a fragments composition process whose execution guarantees
to reach the goal. A dynamic network of DOs is established at runtime to achieve the
user goal. For instance, the dashed arrows in Fig. 1 stand for potential runtime relations
that DOs might establish through the exchange of fragments (see Section 4).

3 The IoT-FED Approach

The IoT-FED approach includes (a) a process, (b) an architecture, and (c) a guideline.
The IoT-FED is a refinement of the abstract architectural approach presented in [1] for
enabling the automated formation and enactment of ECs in the IoT. Another possible
refinement of [1] is presented in [6] where the focus is different compared to this paper,
i.e., it is on the overall approach including adaptation, there is no use of DOs, and it
exploits a different software prototype and scenario for experiments.

3.1 The IoT-FED Process

Figure 2 shows the IoT-FED process to enable the automated formation and enactment
of ECs exploiting DO technologies. Labels A to H on process activities map them to
one or more architectural components handling them in Fig. 3. The process starts by
specifying the user goal type and the goal spatial boundaries. As already mentioned,
the user expresses her/his goal via an application running on one of the available smart



Enacting Emergent Configurations in the IoT through Domain Objects 5

device called the user agent. The goal type corresponds to the type of functionality
provided by the application running on the user agent (e.g., adjust light level). The goal
spatial boundaries correspond to the location where the EC must be formed and enacted
(e.g., Lara’s office). We consider the goal spatial boundaries to be the same boundaries
of the user agent. Given these inputs, the core process of the DO corresponding to the
specified goal type (e.g., adjust light app DO in Fig. 1) is loaded, and its simu-
lation starts. This simulation is needed to check that an EC can be formed to achieve
the user goal in the given spatial boundaries. The goal is achievable if all abstract ac-
tivities in the core process can be refined successfully. All the core process activities
are traversed, without being executed. When an abstract activity is found, a refinement
process is performed to generate a plan (i.e., composition of fragments) which refines
it - if any.

Fig. 2: The EC formation and enactment process

The generated plan, which might itself contain abstract activities, is then injected
in place of the abstract activity it refines. If all found abstract activities are refined
successfully, an EC exists and is formed. The formed EC is made up by the set of
things whose corresponding DOs have been involved in the refinement process, through
the selection of their fragments. The formed EC can then be enacted by instantiating
the DOs forming it. Finally, the initial core process where all the generated plans are
injected, can be executed. In this work, the fragments selection is purely functional.
We plan to extend the process to support some situational context and dependencies in
selecting fragments and consequently EC constituents.

3.2 An Architecture realizing IoT-FED
Figure 3 shows a possible refinement of the abstract architecture presented in [1]. The
architecture realizes the IoT-FED process of Fig. 2, exploits existing components of
the DOs technologies, and presents newly developed components. In the following, we
describe the components and their responsibilities.
Goal Manager. It is responsible for parsing the user goal and starting the EC formation
process. It has two sub-components: the Process loader, responsible for specifying the
user goal type and the spatial boundaries, and for loading the DO process correspond-
ing to the specified goal type; the Planner responsible for the refinement of abstract
activities in the loaded process.



6 F. Alkhabbas et al.

Fig. 3: The IoT-FED architecture

Things Manager. It is responsible for managing available IoT things and DOs. It in-
cludes: the IoT things administrator responsible for answering queries about available
IoT things, their capabilities and locations; the Domain objects manager responsible
for instantiating needed DOs and handling co-relations among them.
Enactment Engine. It is mainly responsible for enacting the EC and includes two sub-
components: the Execution engine is responsible for both (i) simulating and forming
the EC - labels E and F in Fig. 2, and (ii) enacting it -labels G and H in Fig. 2. During
the EC formation, it handles the injection of the plans received by the Planner in place
of the abstract activities they refine, and during the EC enactment it executes the final
refined process that achieves the user goal. The IoT thing instructor is responsible for
passing the Execution engine instructions to IoT things (e.g., get sensor readings).
Context Manager. It is responsible for maintaining the system knowledge. It includes
KB administrator responsible for retrieving data from the KB and the Context parser
responsible for parsing received context from the Execution engine (e.g., new things
states) and passing it to the KB administrator which updates the KB.
Knowledge base. It holds the internal system knowledge and includes four reposito-
ries: the Things states stores knowledge about things operational states (e.g., if lights
are turned on or off); the DO Model that stores all the designed DOs; the Thing2DO
mapping stores associations between things and the DOs representing them (e.g., the
SensmitterDO is a Light Sensor thing); the Capability2DP mapping that stores infor-
mation about capabilities and domain properties relations. Different domain properties
can relate to the same capability. For instance, the actuate light level capability can be
mapped on both the Curtain Actuating and Lamp Actuating domain properties.
IoT services. The IoT-FED approach relies on a cloud platform to provide IoT services
which enable the management and interaction with things. We leverage the Amazon
AWS-IoT platform.

In general, realized components can be deployed to the Cloud (see Section 3.3),
standalone servers or to hybrid infrastructures. A potential infrastructure shall posses
capabilities of consuming available IoT services. The deployment model and aspects
about security, connectivity, interoperability, and so on are out of the scope of this paper.



Enacting Emergent Configurations in the IoT through Domain Objects 7

3.3 A Guideline about IoT-FED

To make IoT things and services available to be used through IoT-FED, a developer
needs to do two main operations, here mapped on the development of the AL prototype.

1. Register things in the AWS-IoT platform: using the notion of templates in the AWS-
IoT platform, developers can register different types of IoT things. For each thing,
three searchable attributes should be specified: (thing) location, capabilities and
REST endpoint automatically generated by the platform. When a thing is set up for
the first time, a developer needs to store the thing initial state in the Things state
repository. Finally, by exploiting the AWS-IoT services, the Context manager can
dynamically answer queries about which things are available in a specific location,
which of them have a specific capability and how to communicate with them.

2. Model things, services and applications as DOs: we illustrate this task by describ-
ing the modeled AL prototype in terms of DOs (see Fig. 1). The operational en-
vironment of the target system is defined through domain properties representing
capabilities (e.g., light sensing, lamp actuating) that have to be registered in the
Capability2DP mapping repository. Then, DOs implementing the specified domain
properties have to be designed. The REST endpoints generated by the platform
are invoked in the DOs processes activities. We can distinguish three levels in the
DO model. At domain grounding level there are all the DOs of things offering
functionalities and possibly requiring the interaction with third-party systems and
things. DOs wrapping things have to be designed for each thing type and brand.
For instance, the DOs of the things that can be part of a smart room such as the
Sensmitter light sensor -with its fragments, e.g., senseLight. At platform level
we have value-added DOs offering value-added services, such as the Actuators

Manager in Fig. 1. These are defined through inter-dependencies among DOs im-
plementing domain-specific functionalities, e.g., the handling of actuator devices.
At application level we have the AdjustLightApp DO modeling as value-added
DOs the user application used for adjusting the light level in different locations -
while the user moves around. Each DO model has to be stored in the DO Model
repository, and for those wrapping things, the mapping thing-DO is registered in
the Thing2DO mapping repository.

4 The AL-office Scenario and AL Prototype Running on IoT-FED

This section presents: the realized AL-office Scenario including the (real/hardware)
things in our IoT lab exploited in the developed (software) prototype, and the DOs
dynamic mechanism leveraged for forming and enacting ECs.

4.1 The Realized AL-office Scenario

The IoT things we used to develop the AL-office Scenario are: three climate Sensmit-
ters4 including light sensors, a Philips Hue light5 which has three bulbs connected by a

4 https://www.senssolutions.se/ 5 https://www2.meethue.com/en-us



8 F. Alkhabbas et al.

bridge, and motorized blinds we built consisting of a stepper motor6 integrated with off
the shelf blinds7. As said, to enable the management and interaction with the things, we
leveraged the Amazon AWS-IoT platform and we deployed the architectural software
components to an Amazon Elastic Beanstalk8 instance running a Glassfish web server.
Moreover, we use gateways as intermediaries between the AWS-IoT platform and the
used things that do not have the processing and storage capabilities needed to connect
directly to the platform (see Fig. 3). Particularly, the Sensmitters transmit data through
a smartphone via Bluetooth technology. The hue light are connected through an Ar-
duino9 board, which also invokes the Philips Hue API services to adjust the bulbs light
levels. Likewise, the motorized blinds connect through another Arduino board, which
also sends the low level commands to rotate the stepper motor, thus opening or (par-
tially) closing the blinds. The communications among the Enactment engine, Things
manager and the IoT platform are MQTT10 based. To develop the AL prototype, we
followed the guideline about IoT-FED, as anticipated in Section 3.3. In the following
section we provide an example of the AL prototype execution.

4.2 Running the AL Prototype on IoT-FED
When a user expresses a goal (at runtime) via a user agent, this triggers the execution
of the IoT-FED process (Fig. 2). The execution starts from the AdjustLightApp DO,
corresponding to the AL application running on the user’s smartphone. Here, we de-
scribe the key mechanism contributing to the formation and enactment of ECs, i.e., the
dynamic refinement of DOs’ abstract activities through the dynamic discovery, injec-
tion, and execution of fragment-based plans.

Figure 4 depicts the situation in which Lara enters her office and she wants to ad-
just the light level in the room. We suppose that this can be done by setting a slider
bar (e.g., from 0 to 10 level) on the AL application interface. Figure 4 (a) describes the
EC formation process of Fig. 2 performed by simulating the execution of the AL core
process. All its activities are traversed, looking for abstract activities and checking that
they can all be successfully refined through some composition of fragments. If this is
possible, at least one EC exists and the generated refinement is injected in the original
AL core process. Figure 4 (b), instead, describes the EC enactment process of Fig. 2
where the generated refined AL core process can be executed. Note that, for the sake of
description, in the following we mix details of ECs formation and enactment. However,
remind that the EC enactment starts only if and after an EC is successfully formed. The
EC formation starts from the core process of the AL application11. When its execution
starts, information about the room where the user is located are retrieved, in order to get
the goal spatial boundaries. Then, among others, a sequence of two abstract activities
(represented with dotted lines and labeled with a goal defined on top of domain proper-
ties) need to be refined. They refer to the sensing and the actuating of the light level in
the room, respectively. Then, the refinement mechanism is triggered. In the following
we list the refinement steps performed while forming the EC.
6 https://components101.com/motors/28byj-48-stepper-motor
7 https://jysk.se/gardiner/persienner/aluminium/alu-persienn-60x80cm-vit
8 https://aws.amazon.com/elasticbeanstalk 9 https://www.arduino.cc/ 10 http://mqtt.org/
11 For presentation purposes, in Fig. 4 we omit some details.



Enacting Emergent Configurations in the IoT through Domain Objects 9

Fig. 4: AL Scenario: an example of the EC formation (a) and the EC enactment (b).

Step 1 consists in finding a plan for the goal G1: SM = Sensor Discovered.
To this aim, the fragment HandleSensors from the SensorsManager is selected for
the refinement and injected in the AL process, in place of the Detect Light Level

abstract activity. During the EC enactment phase, the execution of this fragment al-
lows to send a Sensing Request, by specifying the required capability (e.g., sense
light level), and receive information about the list of available things that might be
exploited for the request. The Sensing Higher Order Abstract Activity dy-
namically generates the Light Sensing abstract activity, after the application under-
stands that the required capability deals with the sensing of the light, given that the
SensorsManager handles different kinds of sensors.

Step 2 consists in finding a plan for the dynamically generated goal G3: LS =

Light Data Sent, which has been defined over the Light Sensing domain prop-
erty. It is interesting to notice that the Sensors Manager is not able to provide itself
the required fragment for the light sensing, because the sensing process depends on the



10 F. Alkhabbas et al.

thing used to do it. Only during the execution, the system can discover and select the
proper things it needs, in the specific context in which it is running. In the Lara’s office
room, the Light Sensing fragment is given by the Sensmitter sensor.

Step 3 and step 4 are performed by following the same procedure of steps 1 and 2,
with the only difference that the system needs now to discover actuators to set Lara’s de-
sired light level. Specifically, a composition made by fragments offered by the Philips
Hue lights and the Stepper Motor actuators installed in the office is used to reach
the user goal.
The final AL application process executed to enact the AL EC is the one in Fig. 4 (b).

5 Validation

To evaluate the feasibility of IoT-FED, we conducted two experiments aiming at an-
swering: can IoT-FED be used to handle the dynamic formation and enactment of ECs
at runtime? Table 1 presents the specifications of two rooms corresponding to the AL-
office and the AL-hotel scenarios (see Section 1). For each room, we defined the installed
things, i.e., light sensors and actuators. Then, we wrapped the things as DOs and made
them usable by the IoT-FED following the guidelines presented in Section 3.3. Note
that the feasibility of the domain object-based approach is analyzed in [7]. The time for
a developer to wrap a service as DO is paid only una tantum; it varies depending on
her/his knowledge of DOs and expertise level and in the worst case is few hours.

Table 1: Office and hotel room’s stationary things.
Device Type Office Room Hotel Room

Light Sensors Sensmitter, LightMeter, WiStar, SensLight Sensmitter, DayLight, WiStar
Lamp Actuators PhilipsHueLight, SmartLamp PhilipsHueLight, IkeaLamp
Curtain Actuators HS-422-ServoMotor, StepperMotor HS-422-ServoMotor

Our experiments include 11 different things of various brands. Besides the real
world things (e.g., Philips Hue Light) we used to implement the AL-office scenario,
we modeled additional things to simulate more complex still realistic settings. The of-
fice and hotel rooms are equipped with 8 and 6 different stationary things, respectively,
in addition to Lara’s smartphone. We performed sequential executions of < 100 > runs
of the AL application per each room to: (i) evaluate the IoT-FED ability to dynamically
generate different ECs based on available things; (ii) get insights on the IoT-FED per-
formances. We evaluated our approach using a dual-core CPU running at 2.7GHz, with
8Gb memory.

Figure 5 shows the different dynamically generated ECs and their occurrences over
the 100 runs of the AL application in the hotel room. Based on randomly requested
light levels at each run, 14 different ECs were formed and enacted. For instance, the
EC number 1 is made as follows: EC1 = 〈smartphone,DayLight,HS − 422 −
ServoMotor, IkeaLamp〉 and it occurs 9 times over the 100 runs. Compared with the
hotel room, the office room has one more light sensor and one more curtain actuator.
Figure 6 illustrates that with only two more devices in the domain space, 32 different
ECs can be formed12. For instance, the EC number 2 is made as follows: EC2 =

12 For readability purposes, in Fig. 6, we show only a subset of the 32 ECs.



Enacting Emergent Configurations in the IoT through Domain Objects 11

Fig. 5: ECs in the hotel room. Fig. 6: ECs in the office room.

〈smartphone, LightMeter,HS − 422 − ServoMotor, PhilipsHueLight〉 and it
occurs 5 times over the 100 runs. For each EC occurrence, we also measured the time
required to form and enact it. Fig. 7 shows the average time for forming and enacting
ECs over the 100 runs of the AL scenario for both the hotel and office rooms, i.e., 2.39
secs and 2.44 secs respectively.

One of the advantages of managing IoT domains w.r.t. Internet of Services (IoS)

Fig. 7: ECs execution time per room.

domains is that we deal with simpler DOs pro-
cesses and fragments (i.e., made by few activi-
ties and transitions). This positively impacts on
the time required for the dynamic composition
of fragments and keeps it in the order of mil-
liseconds. In summary, we can draw positive con-
clusions about the feasibility of the IoT-FED ap-
proach in forming and enacting ECs in dynamic
environments. According to the assumption (A1)
in Sec. 1, we considered a realistic set of things in
these experiments, based on the spatial boundaries
where ECs are enacted. While for future work we

plan to apply the approach to additional real-world scenarios involving more things.

6 Lessons Learned

DOs formalism. IoT things are heterogeneous and operate using different standards.
This makes it evident that there is a need for other layers which can handle complex
processes such as enabling ECs formation and enactment. Wrapping things as DOs
has several advantages. For instance, as DOs, things are represented in a uniform way,
allowing developers to work at an abstract level where they do not always need to
deal with the heterogeneity of things and protocols. Nevertheless, the DOs formalism
can be further extended to better meet IoT domain’s features and requirements. Par-
ticularly, when refining an abstract activity, the fragments discovery and selection is
currently functional. Available fragments whose execution allows the abstract activity’s



12 F. Alkhabbas et al.

goal to be reached are selected and composed. However, specially in IoT domains, a
non-functional selection process would be more appropriate (e.g., to select the device
which has a good battery level instead of a random one).

Moreover, the Execution Engine currently operates in a centralized manner. It should
evolve to better deal with the execution of distributed systems. Since IoT things are
wrapped as DOs manually, the IoT-FED approach supports expressing a set of goals
whose types are specified at design time. We plan to support the automated wrapping
of things as DOs, thus enabling the definition of new goal types at runtime. Currently,
runtime failures require re-executing the EC formation and enactment process to form
new ECs which maintain the achievement of user goals. We recall that enabling auto-
mated adaptation of ECs is out of the scope of this paper.
Amazon IoT platform and deployment services. On the one hand, the AWS-IoT plat-
form contributes several advantages to the IoT-FED approach. For instance, it provides
APIs which support managing and interacting registered IoT things. The platform also
supports routing a huge number of messages at runtime. On the other hand, the platform
imposes some limitations and restrictions. For instance, it puts sophisticated security re-
quirements for registering IoT things. Although the AWS Elastic Beanstalk facilitates
the deployment process, it may require developers to perform security related configu-
rations when applications are (re-)deployed to web servers.

7 Related Work

In the context of architectures, the IoT-FED architecture is compliant with the IoT ref-
erence architecture proposed in [8]. The SOCRADES Integration Architecture (SIA)
is a SOA architecture designed to couple the IoT with enterprise services [9]. In SIA,
processes are modeled at design time by using BPEL. The authors also extended the
BPEL language to enable the dynamic assignment of services at the execution phase.
In [10], the authors propose a service-based architectural approach to enable efficient
and adaptive composition of services. Composite services are modeled and specified at
design time, thus limiting systems flexibility.

The usage of business processes with their related technologies in the IoT con-
text [11] is a novel research field that opened interesting research challenges [12]: from
extensions of standard workflow languages (i.e., WS-BPEL, BPMN 2.0) proposed to
support suitable communication paradigms for the IoT [13, 14], to workflow manage-
ment systems (WfMS) for industrial IoT [15, 16] to execute and monitor IoT-based pro-
cesses. WfMS suitable in dynamic contexts have also been proposed, to adapt processes
in case of failures by replacing the respective resources (things or services) or workflow
tasks [17, 18]. The use of the APFL language enables the IoT-FED approach to dynam-
ically refine abstract processes with concrete ones provided by available things, thus
making it suitable in dynamic contexts, too.

The growing number of online resources, and services led to the rise of methodolo-
gies and tools to create applications by combining them, referred to as mashups. Most
mashups approaches focus on the composition of web-based interfaces and functional-
ities. In [19], the authors focus on the importance of context-awareness and adaptivity
of service mashups in dynamic environments, otherwise, they tend to be misaligned



Enacting Emergent Configurations in the IoT through Domain Objects 13

with their execution environments. In [20], the authors objective is that of overcoming
the static nature of IoT applications that, although highly responsive, are usually based
on pre-compiled mashups, being thus inflexible. The work is based on a decentralized
goal-driven composition of pre-compiled service mashups and, similarly to IoT-FED,
it relies on the abstraction of the referring environment allowing to abstract service
composition requirements. In last years, to facilitate the development of IoT applica-
tion, different mashups editors have been proposed, such as e.g., [21, 22], providing
developers a visual support abstracting both things and services they can compose to-
gether. Differently from [22] our approach includes, but is not limited to, the use of
REST services. Moreover, it allows applications to define dynamic behaviors, due to
the use of abstract activities refined through services composition when the context
is known or discovered. The trade-off of the majority of service mashups approaches
in the literature is that applications rely on static mashups that cannot deal with open
environments. Service-oriented architectures for planning, execution and adaptation of
cyber-physical systems (CPS) have been proposed in [23, 24]. The approach proposed
in [23] is based on a clean separation between domain modeling, planning, execution,
monitoring and actuation services enabling the realization of large scale CPSs. In [24],
the authors propose a MAPE-K autonomic computing framework to manage adaptivity
in service-based CPSs.

Several approaches discuss coalitions of coordinating components, known as chore-
ography. For instance, in [25], a formal framework dealing with self-adaptation in the
context of choreographies is proposed. A group of interacting components has also be
seen as an ensemble. Languages to define ensembles have been introduced (i.e., [26,
27]) to specify what groups of components should be present in the system together
with mechanisms to select at runtime the ones satisfying specific constraints (i.e., pred-
icates). In the IoT-FED approach, the system configuration is less-constrained by design
and it leaves components to freely interact to achieve a user goal in a specific context.

8 Conclusion and Future Work

In this paper, we presented IoT-FED, an architectural approach enabling the automated
and runtime formation and enactment of ECs in dynamic environments. The approach
exploits the DO model and its technologies in the context of IoT environments. We
have presented both the process and the architecture of the IoT-FED approach, with a
guideline about how to use it. Additionally, we presented the developed prototype used
for running initial validation experiments, which showed positive and promising results.

In the future, we plan work in a number of directions including: extending IoT-FED
to deal with the adaptation of ECs at runtime (leveraging the adaptation mechanisms
of DOs); identifying and realizing additional realistic cases that deals with multiple
and possibly competing ECs and using them for more extensive validation; extending
the approach to deal with the selection and composition of things based on some non
functional aspects.



14 F. Alkhabbas et al.

Acknowledgment

This work was partially funded by the project SmartConstruction13 (EIT Digital activity
#18014) and by the Knowledge Foundation through the Internet of Things and People
research profile (Malmö University, Sweden).

References

[1] Alkhabbas, F. and Spalazzese, R. and Davidsson, P.: Architecting Emergent Con-
figurations in the Internet of Things. In: IEEE International Conference on Soft-
ware Architecture, pp. 221–224. IEEE, 2017.

[2] Ciccozzi, F. and Spalazzese, R.: MDE4IoT: Supporting the Internet of Things
with Model-Driven Engineering. In: 10th Intern. Symp. on Intelligent Distributed
Computing, pp. 67–76. Springer, 2017.

[3] Bucchiarone, A. and Sanctis, M. De and Marconi, A. and Pistore, M. and Traverso,
P. : Design for Adaptation of Distributed Service-Based Systems. In:International
Conference on Service-Oriented Computing, pp.383–393. Springer, 2015.

[4] Atzori, L. and Iera, A. and Morabito, G.: The internet of things: A survey. In:
Computer Networks, pp. 2787–2805. Elsevier, 2010.

[5] Bucchiarone, A. and Sanctis, M. De and Marconi, A. and Pistore, M. and Traverso,
P.: Incremental Composition for Adaptive by-Design Service Based Systems. In:
IEEE International Conference on Web Services, ICWS. IEEE, 2017.

[6] Alkhabbas, F. and Spalazzese, R. and Davidsson, P.: ECo-IoT: an Architectural
Approach for Realizing Emergent Configurations in the Internet of Things. In: Eu-
ropean Conference on Software Architecture (ECSA), to appear. Springer, 2018.

[7] Bucchiarone, A. and Sanctis, M. De and Marconi, A.: ATLAS: A World-Wide
Travel Assistant Exploiting Service-Based Adaptive Technologies. In: Interna-
tional Conference on Service-Oriented Computing, pp.561–570. Springer, 2017.

[8] Bauer, M. et al.: IoT Reference Architecture. In: Enabling Things to Talk: De-
signing IoT solutions with the IoT Architectural Reference Model, pp.163–211.
Springer, 2013.

[9] Spiess, P. and Karnouskos, S. and Guinard, D. and Savio, D. and Baecker, O. and
De Souza, L.M.S. and Trifa, V.: SOA-based Integration of the Internet of Things
in Enterprise Services. In: IEEE International Conference on Web Services, pp.
968–975. IEEE, 2009.

[10] Dar, K. and Taherkordi, A. and Rouvoy, R. and Eliassen, F.: Adaptable Service
Composition for Very-Large-Scale Internet of Things Systems. In: 8th Middle-
ware Doctoral Symposium, pp. 2. ACM, 2011.

[11] Chang, C. and Srirama, S. N. and Buyya, R.: Mobile Cloud Business Process
Management System for the Internet of Things: A Survey. In: ACM Comput.
Surv., vol.49 pp.70:1–70:42. 2017.

[12] Janiesch, C. et al.: The Internet-of-Things Meets Business Process Manage-
ment: Mutual Benefit and Challenges. In: arXiv preprint arXiv:1709.03628, vol.
abs/1709.03628. 2017.

13 https://enoba.eu/projects/smartconstruction



Enacting Emergent Configurations in the IoT through Domain Objects 15

[13] Domingos, D. and Martins, F. and Cândido, C. and Martinho, R.: Internet of
Things Aware WS-BPEL Business Processes Context Variables and Expected Ex-
ceptions. In: J. UCS, vol. 20 pp.1109–1129. 2014.

[14] Tranquillini, S. et al.: Process-Based Design and Integration of Wireless Sensor
Network Applications. In: International Conference Business Process Manage-
ment, pp. 134–149. Springer, 2012.

[15] Mass, J. and Chang, C. and Srirama, S.N.: WiseWare: A Device-to-Device-Based
Business Process Management System for Industrial Internet of Things. In: IEEE
International Conference on Internet of Things, pp.269–275. IEEE, 2016.

[16] Seiger, R. and Huber, S. and Schlegel, T. : Toward an execution system for self-
healing workflows in cyber-physical systems. In: Software and System Modeling,
vol. 17, pp. 551–572. 2018.

[17] Seiger, R. and Huber, S. and Heisig, P.: PROtEUS++: A Self-managed IoT Work-
flow Engine with Dynamic Service Discovery. In: Central European Workshop on
Services and their Composition, pp. 90–92. 2017.

[18] Wieland, M. and Schwarz, H. and Breitenbücher, U. and Leymann, F.: Towards
situation-aware adaptive workflows: SitOPT - A general purpose situation-aware
workflow management system. In: IEEE International Conference on Pervasive
Computing and Communication, pp.32–37. IEEE, 2015.

[19] Dorn, C. and Schall, D. and Dustdar, S.: Context-aware adaptive service mashups.
In: IEEE Asia-Pacific Services Computing Conference, pp. 301–306. IEEE, 2009.

[20] Ciortea, A. and Boissier, O. and Zimmermann, A. and Florea, A. M.: Responsive
Decentralized Composition of Service Mashups for the Internet of Things. In: 6th
ACM International Conference on the Internet of Things, pp. 53–61. ACM, 2016.

[21] Giang, N. Ky and Blackstock, M. and Lea R. and Leung, V. C. M.: Developing
IoT applications in the Fog: A Distributed Dataflow approach. In: International
Conference on the Internet of Things, pp. 155–162. IEEE, 2015.

[22] Mayer, S. and Verborgh, R. and Kovatsch, M. and Mattern, F.: Smart Configura-
tion of Smart Environments. In: IEEE Transactions on Automation Science and
Engineering, pp. 1247–1255. IEEE, 2016.

[23] Feljan,A. V. and Mohalik, S. K. and Jayaraman, M. B. and Badrinath, R. : SOA-PE
: A Service-oriented Architecture for Planning and Execution in Cyber-physical
Systems. In: International Conference on Smart Sensors and Systems, pp. 1–6.
IEEE, 2015.

[24] Mohalik, S. K. and Narendra, N. C. and Badrinath, R. and Le, D.: Adaptive
Service-Oriented Architectures for Cyber Physical Systems. In: IEEE Symposium
on Service-Oriented System Engineering, pp. 57–62. IEEE, 2017.

[25] Coppo, M. and Dezani-Ciancaglini, M. and Venneri, B.: Self-Adaptive Monitors
for Multiparty Sessions. In: IPDP, pp. 688–696. IEEE, 2014.

[26] Krijt, F. and Jirácek, Z. and Bures, T. and Hnetynka, P. and Gerostathopoulos,
I.: Intelligent Ensembles - A Declarative Group Description Language and Java
Framework. In: IEEE International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pp. 116–122. IEEE, 2017.

[27] De Nicola, R. and Loreti, M. and Pugliese, R. and Tiezzi, F.: A Formal Approach
to Autonomic Systems Programming: The SCEL Language. In: TAAS. 2014.


