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Abstract.

1 Introduction

In the domain of smart cities, the smart governance concerns the use of technology
in processing information and decision making enabling open, transparent and partici-
patory governments [1], by also supporting the knowledge sharing among the involved
actors. The main instrument through which smart governance operates is represented by
Key Performance Indicators (KPIs) [2] representing raw set of values that can provide
information about relevant measures that are of interest for understanding the progress
of a smart city. The European Commission released and promoted the Sustainable De-
velopment Goals (SDGs3) to be achieved in 2020 [3], on top of which the International
Telecommunication Union (ITU) drafted a list of all the KPIs for Smart Sustainable
Cities (SSCs), along with its collection methodology [4].

However, decision making for smart cities through KPIs assessment is a quite chal-
lenging task. This is also due to the complexity of smart cities that are, de facto, systems
of systems involving different dimensions (e.g., mobility, environment, education), each
managed by different stakeholders, from public administrations to private institutions,
that not always communicate with each other. Moreover, despite the support provided
by Information and Communications Technologies (ICT) in managing different aspects
of complex systems, such as smart cities (e.g., [5]), the currently available frameworks
for the KPIs assessment are too rigid, not easy to suit each specific smart city’s pecu-
liarity, and often not released as open frameworks. Examples are online spreadsheets
or Excel programs4 embedding the used models and KPIs calculation formulas, or
web/cloud-based frameworks with pre-defined set of computable KPIs, without con-
sidering that smart cities may differ in several aspects, based on their stage of economic
development, available services, geographical implications. Moreover, KPIs can vary
depending on the spatial granularity (e.g., small, medium and metropolitan cities).

In this context, we argue that a systematic methodology allowing smart cities stake-
holders to easily define, model and measure the KPIs of interest for their cities, effi-
ciently supporting the decision making process, is necessary. The methodology should
3 https://sustainabledevelopment.un.org/sdgs 4 Key Performance Indica-
tors in Power Pivot at https://bit.ly/37EFR9r

https://sustainabledevelopment.un.org/sdgs
https://bit.ly/37EFR9r
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further support the KPIs customization and evolution to suit the unique features of dif-
ferent and heterogeneous smart cities. In this direction, we defined a model-based ap-
proach for the automatic KPIs assessment in smart cities as an effective instrument for
smart governance enabling the stakeholders knowledge sharing, data interpretation and
smart cities evaluation and comparison. The approach foresees the separate modeling
of smart cities and KPIs by experts and stakeholders, leveraging Model-Driven Engi-
neering (MDE) techniques [6]. The two models are then used by an evaluation engine
that will provide the evaluated KPIs over the candidate smart cities.

To make the approach robust, a supportive software architecture is required, that
needs to leverage the offered abstraction in order to keep deployment aspects outside
of the box. In this paper, we present a flexible architecture supporting the model-based
approach for KPIs assessment in smart cities that identifies both required and optional
components and corresponding functionalities needed for realizing the automatic KPIs
assessment approach, while showing two main flexibility points allowing for different
specification of the architecture, thus of the overall methodology implementation. The
flexibility is given by (i) different deployment patterns that can be followed for specify-
ing the architecture (e.g., standalone, hybrid, online); (ii) the technology-independent
nature of the shaped components, which enables the use of diverse technologies for im-
plementing the designed architectural components, to also better suit the chosen deploy-
ment style (i.e., online modeling editors better suit in online deployment of the system).
This last point also includes the tool-independent nature of the KPIs evaluation engine,
which plays a central role in the overall methodology. The proposed architecture fur-
ther benefits from all the positive aspects of the model-based nature of the approach,
i.e., support to software evolution, automation of software production with code gen-
eration, support to technological bridges, and so on. Moreover, our architecture may
provide guidelines for the definition of MDE tools (i.e., for the development, interpre-
tation, transformation of models) where quality evaluation is the main objective [7].

2 Related Work

Several architectures have been proposed in the smart cities domain. The minimal re-
quirements that a robust smart cities architecture must meet, such as distributed sens-
ing, integrated management and flexibility are given in [8]. In [9], the authors present an
approach for designing smart city’s ecosystems, by means of a reference architecture
called SmartCityRA. It represents a way to create smart cities blueprint that can help
the instantiation of smart cities projects. They exploit variability modeling and model-
driven architecture techniques, to produce a Domain Specific Language (DSL) for mod-
eling smart city systems (i.e., SmartCityML). The usability of the approach is further
shown through a Smart Parking scenario. However, despite this approach provides fea-
tures for smart cities modeling, like our, it does not support the KPIs modeling and
assessment. In [10], a reference architecture for designing a smart city context through
the use of Big Data adhering to the NIST (National Institute of Standards and Technol-
ogy) standard is presented. Here, the focus is more on the design of Big Data processing
in smart environment contexts. The aim is that of exploiting the proposed conceptual
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model to create a unified intellectual infrastructure for environmental monitoring. Thus,
they do not consider other smart cities contexts, different than environment.

From the perspective of using data for decision making in smart cities, different
architectures are also provided, as for instance in [11] where data is exploited to sup-
port administration processes. Another data-driven approach is presented in [12]. The
authors propose a data-driven IoT Software Platform for realizing sustainable Smart
Utilities, a.k.a. smart services, in order to further develop applications on top of them.
Specifically, they provide a service-oriented architecture that makes use of Web stan-
dards and protocols. The proposed architecture is scalable over cities of different di-
mensions and is generalizable to different smart utility domains, other than smart water
management. In [13] it is presented a reference architecture to support the development
of smart cities platform in order to help stakeholders in making projects, investments
and decisions about the cities they manage. In [14] a Distributed-to-Centralized Data
Management (D2C-DM) architecture is proposed. It provides different software and
services layers, which use distinct data types gathered from physical (e.g., sensors) and
non-physical (e.g., simulated data) data sources in the smart city. The aim is to show
the easy adaptation of the architecture in contexts with different software requirements.

Nevertheless, despite the availability of multiple architectures supporting smart cities
modeling and analysis, either from a wide perspective or focusing on a few dimensions,
to the best of our knowledge, none of them specifically targets the modeling and assess-
ment of KPIs that are crucial in the performance evaluation of smart cities.

3 Approach and Proposed Flexible Architecture

In this section we give an overview of the approach for the automatic KPIs assessment
in smart cities, which represents the background for this work. Basically the evaluation
of a smart city can be summarized in 3 steps: A Define the smart city in a way that is
processable; B Define/select the KPIs of interest; C Evaluate the selected KPIs on the
subject smart city. In order to support this process, we defined a model-based approach,
by identifying smart cities’ concepts and the relations among them. Furthermore, we
investigated how KPIs can be represented and measured, i.e., what type of calculations
and data they require. In MDE, metamodels are central assets that allow designers to
formalize application domains and consequently to achieve superior automation [15] in
the software life cycle. Indeed, this allowed us to design both a Smart City metamodel
and a KPIs metamodel, on top of which appropriate modeling tools (i.e., graphical and
textual concrete syntaxes and editors) can be defined. In particular, the KPIs metamodel
reflects the KPIs list for SSCs released by the ITU [4] and conforming to the SDGs [3].
The modeling tools are devoted to smart cities stakeholders, supported by KPIs experts,
and allow them to define in a uniform way the smart cities they manage ( A ) together
with the KPIs they are interested in ( B ), without knowing technological aspects and
abstracting from the target deployment platform. The generated models will be used as
input for an Evaluation Engine that will interpret and calculate the modeled KPIs for
the candidate cities, by giving as output an evaluated KPIs model ( C ). We highlight
here that the KPIs model can be easily extended or customized to accommodate specific
smart cities requirements as well as the KPIs evolution over time.
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Fig. 1: Overview of the model-based KPIs assessment approach.

Example. To better understand the approach, we report a basic but realistic example in
Fig. 1. We show some simple portions of the models we used to evaluate the smart city
of L’Aquila (Italy). We focus on a single KPI, Bicycle Network (BN), which is calcu-
lated as in equation (1). It measures the length of bicycle paths per 100.000 inhabitants
as the ratio between the bicycle paths length and one 100.000th of the city population.

BN =
Bicycle Path Length (km)

1
100000 × City Population

(1)

In the left side of Fig.1 we show a portion of the graphical representation of the
model for the city of L’Aquila ( A ), where the concepts needed for the BN KPI calcula-
tion have been modeled, e.g., PisteCiclabili.com is the provider of the BikePathLength
data. In the top-right side of Fig.1, instead, there is the portion of the textual representa-
tion of the KPIs model ( B ) that refers to the BN KPI and its formula, as in equation (1).
Notice that, to be calculated, the BN KPI needs data coming from the smart city model
(e.g., BikePathLength, CityPop). Once these two models have been processed by the
evaluation engine, it will give as output the evaluated KPIs model ( C ), on the bottom-
right side of Fig. 1, which corresponds to the actualized KPIs model. Note that for those
cities with less than 100000 inhabitants, the denominator in equation (1) is evaluated to
1. Thus, for the city of L’Aquila with 69605 inhabitants and 86 km of bicycle paths, the
BN KPI has a value of 86 Km per 100000 inhabitants. What we want to highlight
here is that (1) smart governance team can discover weaknesses of the assessed cities
by interpreting the evaluated KPIs; (2) the approach enables simulation and forecasting
of smart cities performances, by testing different settings in the models.
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The Proposed Flexible Architecture. Fig. 2 shows the proposed flexible architecture for
KPIs assessment in smart cities supporting the process described above. It is made by
six macro-components (also components from here on), representing the main required
functionalities, and control- and data-flow between them. The architecture is devoted to
several Stakeholders that can be divided in two main groups: (i) those designing
or applying the architecture, i.e., the Developers Team (comprising also modelers, DSL
engineers and software architects) and the KPIs Experts, which are responsible of the
design and implementation of the main software components and modeling artifacts;
(ii) the final users of the software solutions based on the architecture, i.e., Municipal-
ities, Smart Governance Team, Ranking Agencies, Researchers, etc. They can be as-
signed different granting access, i.e., read, write, execute, depending on their profile.
For instance, municipalities can be interested in modeling the smart cities they manage
and evaluate KPIs on top of them. On the contrary, ranking agencies might be interested
only in the analysis and interpretation of (open) data about previously evaluated cities.
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Fig. 2: The Flexible Architecture for the KPIs Assessment in Smart Cities.

The six main components are Requests Management, Modeling, Metamo-
deling, Analysis, Persistence, and Data Visualization, labeled from
(1) to (6), respectively. In Fig. 2, solid arrows shape the control-flow among the com-
ponents and dashed arrows shape the data-flow among them. It is worth noting that
data-flow may involve entire models but also raw data may be exchanged, usually per-
sisted via XML or customization of XMI. We now describe each component.
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Requests Management. It behaves as the interface among the stakeholders and
all the other components of our architecture. Indeed, it handles all the users requests
through its two sub-components, the Requests Manager (1.a) and the Authenti-
cation Manager (1.b). The Authentication Manager handles the users reg-
istration, authentication and authorization. It supports the Requests Manager every
time it needs to create users sessions to accomplish the requests they make, based on
their access grants. It is an optional component, depending on the deployment style.
E.g., it might be not required in standalone specifications of the architecture, while it
is suggested for online ones. The Requests Manager handles several interactions.
It receives and forwards the user’s requests to the appropriate components and the re-
quests among components. Three main requests can be handled at this stage, namely
(1) the model request to the Modeling component, from those users (with proper per-
missions) who needs to model the smart cities they manage and to select/customize the
KPIs they are interested in, through the available editors; (2) the store/query/retrieve
request to the Models Manager in the Persistence component, from users that
want to store/gather models relating to their previously interactions with the system
(e.g., municipalities) or from those users with read only permissions who wants to get
available open data for their analysis (e.g., researchers); (3) the forward visualization re-
quests to the Data Visualization component for the graphical visualization and
interpretation of the evaluated KPIs. Furthermore, the model request to the Modeling
component can, in turn, give raise to further interactions: during and after the user in-
terplay with the editors, the Modeling component can forward to the Requests
Manager the query/store/retrieve request to interact with the Persistence compo-
nent, for querying the Models Repository and for storing the produced models as
well as the KPIs assessment request to be forwarded to the Evaluation Engine,
via the forward evaluation requests interaction.

Metamodeling. It is responsible for hosting the two core metamodels of the model-
based approach for the KPIs assessment in smart cities, namely the Smartcity Me-
tamodel (2.a) and the KPIs Metamodel (2.b), and the corresponding tools used
to model them. It is also responsible for managing and keep trace of their evolution
accomplished cooperatively by the Developers Team and KPIs Experts (design relation
in Fig. 2), which adapt the two metamodels according to the evolving nature of both
smart cities and KPIs. This component is developed at the beginning of the process
and should be freezed and stable for enabling the modeling phase. In case evolution
scenarios occur, coupled-evolution of the already modeled cities have to be performed
in order to be compliant to the new metamodels [16].

Modeling. It is responsible for managing the generated editors required for allow-
ing granted users to both model smart cities and model or select and customize KPIs.
Modeling is the activity in which the designer creates / edits the contents of the ap-
plication. Nowadays multiple modeling tools are available and they differ for various
aspects, in which we distinguish textual or diagrammatic concrete syntax, or even more
basic modeling editors, like tree view based. For this reason, the usability of the final
product is strongly driven by the available modeling tools. Specifically, in this compo-
nent we find the Smart City Modeling Editor (3.a) devoted both to experi-
enced and non-expert MDE developers, such as the smart governance team’ members
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that use the system to model the smart city they manage, to subsequently evaluate its
performance. Graphical editors are recommended here, for usability reasons, such that
to provide user-friendly editors. Differently, the KPIs Modeling Editor (3.b) is
mainly devoted to KPIs Experts who are widely experienced in KPIs and up to date
about the evolving KPIs documentation and collection methodology provided at Euro-
pean level. From one hand, they are in charge of modeling KPIs (model KPIs in Fig. 2)
reflecting the official guidelines. From the other hand, different smart cities managers
might be interested in diverse KPIs. For this reason, a certain degree of KPIs selection
and customization must be provided. This is accomplished by the KPIs Fragment
Selection/Customization Editor (3.c) that allows users to “query” the KPIs
model in the KPIs Modeling Editor to select and possibly customize given KPIs
and further generate the so-called model fragments. Borrowing the definition of inter-
esting object structures [17], we define model fragments such KPIs model’s internal
selection. The main KPIs model includes all the KPIs defined by experts, while model
fragments identify the selection made by the user. Eventually, the interaction of stake-
holders with the modeling editors brings to the creation of the Smart City model (SC
model from here on) and KPIs model, both conforming to the domain models in the
Metamodeling component, indeed they can be managed by using its generated API.

Analysis. It is responsible for managing the automatic KPIs assessment over smart
cities. It includes the Evaluation Engine (4.a) that is devoted to interpret and cal-
culate the modeled KPIs for one or more candidate smart cities. In particular, it receives
KPIs evaluation requests forwarded by the Requests Manager (forward evaluation
requests in Fig. 2) together with the SC model and KPIs model. After the evaluation, it
sends the evaluated KPIs model to the Results Exporter (4.b), which is in charge
of exporting results in different formats (e.g., .csv, .xml or JSON files), depending also
on the use that stakeholders intend to make of it (e.g., graphical visualization, textual
interpretation, further elaborations) and from the tool which might be used for their
visualization and interpretation. Eventually, the Analysis component forwards the
evaluation results to the Requests Manager that sends them to the user who sub-
mitted the KPIs evaluation request and/or to the Data Visualization component.

Persistence. It manages the persistence of all the artifacts involved in the process
of KPIs assessment, together with the stakeholders related data, such as their profiles,
access grants and authentication data. In particular, it contains five components. The
Models Manager (5.a) acts as the main interface of the Persistence compo-
nent. It receives all the store/query/retrieve requests by the Requests Manager,
together with the accompanying data, such as the SC/KPIs models & user data, and
it sends the corresponding replies. Moreover, before forwarding the received requests
to the Persistence Manager (5.c), the Models Manager interacts with the
Fragments Generator (5.b) (store/query/retrieve in Fig. 2), to handle those cases
in which the specific request deals with modeling artifacts and there might be the need
of generating model fragments from them. The fragments generation does not apply
for those requests addressed to the Users Repository and containing only user
data, in which case the Fragments Generator does not execute any operation and
only forward the request to the Persistence Manager. Once requests and relative
data arrive to the Persistence Manager, it is responsible for storing, querying or
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retrieving data from the appropriate repository, such as Models Repository (5.d)
and Users Repository (5.e). In addition, artifacts stored in the Models Repo-
sitory also contain metadata about the users holding their ownership, while the
Users Repository stores information about users profiles and granting access.

Data Visualization. It is responsible for the evaluated KPIs model visualization
and interpretation through the Dashboard (6.a) and SC Ranking (6.b) compo-
nents. The former handles the graphical transformation of evaluated KPIs in appropriate
and easy to understand charts. The latter shows the ranking among several smart cities
whose models are made available and retrieved from the Models Repository, only
for smart cities comparison purposes. To this aim, the Data Visualization re-
ceives forward visualization requests from the Requests Manager with the evalu-
ation results from the Analysis component.

All the components and their functionalities, except for the Data Visualiza-
tion component, are mandatory to allow architecture specifications to accomplish the
task of KPIs assessment in smart cities. On the contrary, to implement its functionalities,
a component might not always require all its sub-components, as we will see.

4 Prototypical Implementation

The presented architecture can be specified by using a combination of various tech-
nologies and deployment patterns. In this section, we present implementation details
about the prototype we developed, corresponding to a standalone specification5, being
the architecture entirely implemented as a standalone platform. Eclipse is the release
platform we have chosen, which also provides pre-packaged bundles for specific devel-
opment paradigms. Specifically, the target platform is represented by the Eclipse Mod-
eling Framework (EMF)6 that provides the modeling language to engineer DSLs [18].
The EMF core includes a metamodeling language, called Ecore, used for describing
domain models, and runtime support for the models including change notification, per-
sistence support with default serialization, and reflective APIs for manipulating objects
in the models. On top of the EMF bundle, the Metamodeling component (2) has
been defined and it hosts the two main domain models ((2.a) and (2.b)) from which
the Java code, supporting model manipulation and editors composition, is generated.
On top of this layer, two editors are implemented ((3.a) and (3.b)) to better cope with
the composition of the involved models, such as the editing of models with the pos-
sibility of filling them with model elements that can be composed. The editors im-
plementation is supported by DSLs that, in general, can be graphical or textual [19].
From one side, graphical editors provide an intuitive GUI for modelers. On the other
side, textual editors provide a support tool to define models as textual specification,
which is better transposed by developers. In order to enable the usage of the editors by
both experienced and non-expert users (e.g., smart cities stakeholders), the component
(3) is implemented with two different technologies. The Smart City Modeling
Editor (3.a) is built on top of Sirius [20], a graphical concrete syntax generator cre-
ating the graphical modeling workbench for modeling smart cities. Smart city projects
5 Project available at: https://github.com/gssi/SmartCityModeling.git
6 https://www.eclipse.org/modeling/emf/

https://github.com/gssi/SmartCityModeling.git
https://www.eclipse.org/modeling/emf/
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Fig. 3: Standalone specification of our architecture.

are quite large and involve different aspects and view points; since Sirius is based on
a view points approach, it suits perfectly in this case. The KPI Modeling Editor
(3.b), instead, is devised for modelers supporting KPIs experts to specify KPIs and
relative calculation formulas. For this reason it has been implemented with a textual
concrete syntax by means of Xtext [21]. Xtext was chosen because it provides much
more “expressiveness” and “agility” to the users, which can edit raw data in a very
feasible way. The KPI Modeling Editor offers a way to declare how KPIs are
calculated in detail, in the perspective of reuse, where the modelers can share their def-
initions. Lastly, the KPIs Fragment Selection/Customization Editor
(3.c) is implemented by means of a custom reusable mechanism offered by Xtext. In
particular, if the KPIs are declared as “reusable operations” in a library, the users can
invoke the KPIs needed through this library. When the SC model and KPIs model have
been defined, then the Analysis component (4) can be invoked, thus triggering the
KPIs evaluation phase. This process is managed by the Requests Manager (1.a)
that is implemented as an Eclipse plugin organized with the extension point mecha-
nism. It can be activated by file saving operations or even directly by menu entries in
the editors. By selecting a SC model and a KPIs model (with specific extensions), a
menu entry is enabled and the EOL script implementing the Evaluation Engine
(4.a) is triggered. The Epsilon Object Language (EOL) is an imperative programming
language part of the Epsilon framework [22] for creating, querying and modifying mod-
els built on top of EMF. Basically, the EOL script is a file in the workspace of the project
that will be invoked by the plugin. The Evaluation Engine generates the evalu-
ated KPIs model and the result will be also printed in the output console of Eclipse. The
stakeholders can then request the visualization of the results in two different ways: by
inspecting the textual result in the console or by asking to the Results Exporter
(4.b) to generate an .xls file from the evaluated KPIs model. The excel file will be
produced by a model-to-text transformation, from the Results Exporter imple-
mented in Acceleo7, i.e., one of the most used tools for code generation in MDE.

7 https://www.eclipse.org/acceleo/

https://www.eclipse.org/acceleo/
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5 Evaluation

In this section, we evaluate the flexibility of our architecture by giving evidence of (i) al-
ternative deployment patterns that can be used, and (ii) the technology-independent
nature of the architectural components, enabling the use of diverse technologies, also
w.r.t. the chosen deployment style. Moreover, we evaluate the performance of our ar-
chitectural approach by running experiments based on the realized prototype.

5.1 Flexibility Evaluation

We now describe two additional specifications of our architecture, namely hybrid and
online. They are currently under development, although they rely on a partial reuse of
the implemented standalone specification, thus we focus on the differences w.r.t. it.

Hybrid Specification. In the hybrid specification, depicted in Fig. 4, part of the archi-
tectural components are deployed online and part of them reside locally on the user’s
machine. The Internet layer is in between them. Components (2) and (3) are the same as
in the standalone specification. The Requests Manager (1.a) presents both a local
and a remote instances. The local one is in charge of activating the editors and trigger-
ing the remote KPIs evaluation by sending a request, via the internet, to the remote one
that will forward the request and the received models to the Evaluation Engine
(4.a). This step is preceded by an authentication process started by the local Requests
Manager that will authenticate the local user to the remote Users Repository
(5.e) via the Authentication Manager (1.b). For the Authentication Ma-
nager’s implementation we plan to use the J2EE framework with the technologies it
exploits for realizing the Model-View-Controller (MVC) architecture (e.g., Spring, Hi-
bernate). The Users Repository and the Models Repository (5.d) are man-
aged by the Persistence Manager (5.c). Models can be passed as parameters
from the local Eclipse editors, if they are brand new models edited from scratch, or
they can be requested to the Persistence Manager that will execute the query
and retrieve operations on the Models Repository. The Persistence com-
ponent (5) has different tasks that range over the usual repository operations, to the
query management, in order to extract fragments of the models through the Fragment
Generator (5.b), which can be realized by means of a DSL similar to that used
for the KPIs Fragment Selection/Customization Editor (3.c) allow-
ing for querying models. Repositories operations are delegated to a repository manager
called MDEForge [23] implementing the Persistence Manager. It consists of a
set of core services that permit to store and manage typical modeling artifacts and tools,
specifically conceived for models. It comes with APIs that can be used to interact with
the repository functions without using the provided web interface. This allows MDE-
Forge to be easily integrated in the infrastructure. Lastly, the Models Manager (5.a)
will be interposed between the MDEForge and the Requests Manager, as an in-
terface of the Persistence component. When the required models are available for
the analysis phase, the Evaluation Engine (4.a) implemented with a Java model
parser can be invoked. Through model interpretation also called compilation, the input
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Fig. 4: Hybrid specification of our architecture.

models are directly used to run the system [24] or to invoke other actions during the
interpretation at runtime. As before, the analysis phase will generate the evaluated KPIs
model, however the console output in the hybrid specification is only used for testing
purpose, being accessible only from the server-side. In this specification, the Acceleo
Results Exporter can export results in other format than .xls file or it can expose
itself an API for results visualization purposes, to be forwarded by the Requests
Manager. We then plan to provide a local Data Visualization component (6)
as an Eclipse plugin. It can read the evaluation results both by receiving the generated
results file or by listening to the dedicated API, thus implying a sort of asynchronous call
to the Evaluation Engine. The Data Visualization populates the charts
shaping the results of the KPIs evaluation in an Eclipse view used by the stakeholders.

Online Specification. The online specification has the peculiarity of being completely
deployed online. For lack of space, we do not show its deployment design8 and we
describe only its relevant differences w.r.t. the hybrid specification. Being everything
online, the main instrument to use the platform is the browser, that provides access to a
web application including the different components. More specifically, the Modeling

8 For the interested readers it can be found at https://bit.ly/3bqbqG2

https://bit.ly/3bqbqG2
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component (3) will be implemented through Eclipse Theia9 allowing to run Eclipse
online, with all the benefits of having an in-browser extensible IDE. For the editors, the
two candidate technologies allowing for running modeling editors in web browsers are
Eugenia Live [25] for the Smart City Modeling Editor (3.a) and Xtext (from
version 2.9 on) for the KPIs Modeling Editor (3.b).

The advantage of an online environment supports one of the main problems that
slows down the path of MDE towards a standard: the reluctance in installing different
tools, most of them academic, with all the related issues linked to safety and reliabil-
ity. These aspects cannot be neglected in an industrial scenario. Moreover, collabora-
tive repositories have been extensively proposed and investigated in MDE [26], high-
lighting multiple challenges. Among these, visibility of the repositories stored artifacts
seem to be one of the hot topic in industry. Multiple resolutions have been proposed to
tone down the reluctance in employing these tools, and extended visibility management
seems to be needed [27] to assure that only artifacts intentionally shared will be visible
to the community and not the models including intellectual property rights.

Alternative Candidate Technologies. We did an analysis about available languages
and technologies and their suitability for implementing our architecture. Several valid
alternatives exist to implement the different components of Fig. 2, as shown in Table 1.
This list is not intended to be exhaustive, given the panorama of possible integrations,
but we give an idea of available tools. In the second column of the table, Xdenotes
that the corresponding component is mandatory, independently of the used deployment
style, while ≈ denotes that the component may be missing, e.g., because its offered
functionality may be omitted without compromising the functioning of the approach
(e.g., the Data Visualization) or because it is not required for the used deploy-
ment (e.g., the Authentication Manager in a standalone instance).

5.2 Performance Evaluation
To evaluate the performance of our architecture, we performed a set of experiments
by running the standalone specification, using a 6 core CPU running at 2.2GHz, with
16Gb memory. The goal of our experiments is that of checking the evaluation engine
execution time w.r.t. the size of the input models, i.e., the number of elements in the
models. Thus, we designed a smart city model, in which we instantiated every concept
of the metamodel, and a KPIs model. In particular, according to the ITU, KPIs are
hierarchically organized [4]. A KPIs model is composed by 1 . . . n dimensions, also
containing sub-dimensions, each composed by 1 . . . n categories that, in turn, contain
1 . . . n KPIs. The used KPIs model is initially made by one dimension with one category
of 8 KPIs, thus to cover all the calculations defined in the KPIs Metamodel.
9 https://theia-ide.org 10 https://bit.ly/3cGvJAC
11 https://bit.ly/2z6pF5A 12 https://www.eclipse.org/atl/
13 https://bit.ly/2WZcYl6 14 https://bit.ly/3eQQef6
15 https://bit.ly/2Z9bzuR 16 https://github.com/neo4emf/Neo4EMF
17 https://emfjson.github.io/ 18 https://www.eclipse.org/emfstore/
19 https://www.mysql.com/ 20 https://bit.ly/353KD0P
21 https://spring.io/ 22 https://www.eclipse.org/xtend/

https://theia-ide.org
https://bit.ly/3cGvJAC
https://bit.ly/2z6pF5A
https://www.eclipse.org/atl/
https://bit.ly/2WZcYl6
https://bit.ly/3eQQef6
https://bit.ly/2Z9bzuR
https://github.com/neo4emf/Neo4EMF
https://emfjson.github.io/
https://www.eclipse.org/emfstore/
https://www.mysql.com/
https://bit.ly/353KD0P
https://spring.io/
https://www.eclipse.org/xtend/
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Table 1: Architecture flexibility in terms of required components and technologies.
Components Mandatory Candidate Technologies

Requests Manager X Eclipse plugin, Java
Authentication Manager ≈ Java
Smartcity Metamodel X Ecore, Kermeta [28], UML
KPIs Metamodel X Ecore, Kermeta, UML
Smart City Modeling Editor X Sirius, Eugenia Live, Eugenia
KPIs Modeling Editor X Xtext, EMFText [29]
KPIs Fragment Editor X Xtext, OCL10, EMF-Fragments11

Evaluation Engine X Java, EOL Script, ATL12, ETL13

Results Exporter ≈ Acceleo, JET14, EGL15, Xtend22

Models Manager ≈ Java, MDEForge
Fragments Generator ≈ EMF + Java + OCL
Persistence Manager X MDEForge, Neo4EMF16, Relational DB, EMFJson17

Models Repository X MDEForge, EMFStore18

Users Repository ≈ NoSql [30], Mysql19, MSSql20

Dashboard ≈ Spring21, other J2EE or JS-based frameworks
SC Ranking ≈ Spring, other J2EE or JS-based frameworks

Fig. 5: Exp1: increasing the number of evalu-
ated smart cities.

Fig. 6: Exp2: increasing the complexity in the
calculation of each modeled KPI.

Fig. 7: Exp3: make each KPI of type range. Fig. 8: Exp4: increasing the number of KPIs.

In Fig. 5, we show the results of our first experiment Exp1. For each execution run
of the evaluation engine, we increment the number of modeled smart cities in the SC
model from 1 to 10 and we measure the 8 KPIs in the KPIs model for each of them.
As shown in Fig. 5, the models size goes from 200 to 632 elements and the execution
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time goes from 16 milliseconds (ms) to 79 ms. Fig. 6 reports the results of Exp2 for
which we started by giving as input to the evaluation engine the SC model made by 10
smart cities, which remain fixed, and the KPIs model as in Exp1. Then, at every run
we increase the complexity of the KPIs calculations, by adding new nested operations,
one KPI at a time. This impacts on the time required to measure each KPIs. In Fig. 6
we can observe that the size of the models goes from 638 to 676 and the execution time
goes from 82 ms to 198 ms. Interestingly, despite the models size does not increase
significantly, the execution time particularly increases in the last run. This is due to the
fact that this run involves a KPI whose calculation combines the range operation, i.e.,
the most time consuming one, with a basic operation (e.g., AV G). From this observa-
tion, we designed Exp3 (Fig. 7) such that, at every run, we add a range calculation in
the definition of each KPI, one KPI at a time. In Fig. 7, we can observe that the size of
models slightly increases from 692 to 803 elements (only 127 elements more than the
last run in Exp2) while the execution time ranges from 306 ms to 1279 ms, by show-
ing a considerable increase, thus confirming our prediction about the time consuming
of calculations including the range operation. However, the overall execution time is
still reasonable for the given models size. Eventually, in Exp4 (Fig. 8) at every run
we increment by one the number of dimensions in the KPIs model, where each dimen-
sion includes 8 KPIs with complex calculations. Consequently, the number of evaluated
KPIs goes from 16 in the first run to 80 in the last one, always assessed on top of the
10 smart cities in the SC model. This means that in the last execution we assessed 800
KPIs in the same run. Fig. 8 depicts that the size of the models goes from 1124 to 3692
elements and the execution time ranges from 2426 ms to 12892 ms.

Summarizing, these experiments point out two main findings: (i) the efficiency in
terms of the evaluation engine’s execution time, since all the experiments show a linear
or polynomial (of degree 2) increase of the execution time w.r.t. the increasing models
size; (ii) promising scalability results showed by Exp4, indicating that the system takes
12.9 seconds for assessing 800 KPIs over 10 smart cities.

Threats to validity. The settings of the input parameters in the evaluation might in-
ternally bias our experimentation. Both the SC model and the KPIs model lead to the
execution of calculations of diverse complexity, depending on the size of the two models
and the number of KPIs, but the overall evaluation procedure is not affected. For these
reasons, we considered incrementally complex models in each run, to trigger more com-
plex calculation and smooth biases in the output results. As external threats to validity,
we are aware that we need to perform the KPIs evaluation by using SC models of real
smart cities, but we leave this point as part of our future work, where we plan to evaluate
the system by involving real stakeholders, also to evaluate the provided editors.

6 Conclusion and Future Work

In this paper we presented an architecture supporting a model-based approach for the
KPIs assessment in smart cities. Its goal is to provide a robust and flexible platform for
the performance evaluation of smart cities, to be easily used by smart cities stakehold-
ers, during the decision making and planning process.
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As future work we are finalizing the implementation of the hybrid and online spec-
ifications and designing an experiment to evaluate the feasibility and usability of the
methodology with the involvement of real smart cities stakeholders who have to make
use of the provided modeling and analysis tools and data visualization facilities. Finally,
we consider the integration with legacy data formats such as CityGML.
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