
DeMOCAS: Domain Objects for
Service-based Collective Adaptive Systems

Antonio Bucchiarone, Martina De Sanctis, Annapaola Marconi, and Alberto Martinelli

Fondazione Bruno Kessler, Via Sommarive, 18, Trento, Italy
{bucchiarone,msanctis,marconi,amartinelli}@fbk.eu

Abstract. DeMOCAS is a framework for the modeling and execution of service-based
collective adaptive systems operating in dynamic environments. In this framework, we ap-
ply the Domain Object model and a Collective Adaptation algorithm to a case study from
the mobility domain and we show its advantages in handling large-scale, decentralized and
adaptive applications.

1 Introduction

Collective Adaptive Systems (CASs) are composed of distributed and heterogenous entities com-
ing from both the real world and the back-end computer systems. Entities provide different sys-
tem functionalities through their services. Services are defined as unique identifiable building
blocks representing a concrete functionality in a larger, multi-service system. Implementing a
functionality may involve interacting with other services through pre-defined protocols. At the
same time, due to the high dynamism of the environment in which each service operates, the
system must be able to re-configure its behavior at run-time in order to satisfy new users require-
ments and to fit new situations (i.e., unexpected and unlikely context changes). These systems
with many services running in parallel, tend to display non-linear dynamics, which lead to de-
centralized adaptations that can break the consistency of the whole collaboration. Because of
this, the adaptation must be itself collective, that is, multiple services must adapt simultaneously
in a way that they properly address a critical runtime condition, while, at the same time, they
preserve the collaboration and its benefits. In this paper we present DeMOCAS 1 a framework
for the modeling and execution of service-based CASs. It includes mechanisms for services spe-
cialization and adaptation [3] and exploits the concept of Domain Object 2 [2] as a way to model
customizable and adaptable services. DeMOCAS is build around three main aspects: (i) dynamic
settings: each CAS is a collection of autonomous entities entering and exiting the system dynam-
ically; (ii) collaborative nature of systems: entities can collaborate in groups (i.e., ensembles) for
their mutual benefit; (iii) collective adaptation: multiple entities must adapt their behavior in
concert to respond to critical runtime impediments. To demonstrate DeMOCAS in action, we
use a real-world scenario from the urban mobility domain3.

2 Application Domain and Scenario

The scenario refers to a Multi-modal and Collaborative Urban Mobility System (UMS), in a
smart-city context. Its goal is that of synergistically exploiting the heterogeneous city services
(e.g., transport, smart-card, online payment services), providing accurate, real-time, and cus-
tomized mobility services, for the support of the whole travel duration. In the following, we
present two reference storyboards from the scenario.

Storyboard 1. It is concerned with the normal execution of the UMS from the point of view
of a user that needs to move around in the city. The system allows users to plan and execute a

1 DeMOCAS is downloadable at the link: https://github.com/das-fbk/DeMOCAS
2 The Domain Object model extended for the purpose of collective adaptation has been submitted to the

main conference ICSOC2016, and it is under review.
3 A video featuring the DeMOCAS solutions within the ALLOW Ensembles Project - http://www.
allow-ensembles.eu/ can be viewed at the link: https://youtu.be/H0_LjptwZDg



journey, by providing a set of required information (e.g., departure and arrival time and places)
and preferences (e.g., preferred transport means). The system arranges the set of suitable mobility
alternatives, among which the user can choose the preferred one (e.g., the flexibus). At execution
time, ensembles made by heterogeneous entities (e.g., the flexibus company, the route manager,
the flexibus driver, the passengers) are dynamically organized. Although autonomous in their
execution, they share common goals (e.g., being on time at the destination point).

Storyboard 2. It refers to how the system deals with context changes affecting its execution
(i.e., unexpected changes in the environment, unpredictable behavior of the participants). Every
participant of an ensemble can benefit from being part of it. The different entities can collabo-
rate to reach the common good, in the cases in which adaptation needs arise (e.g., the flexibus
route is blocked, a passenger is late to a pick-up point). If a collective adaptation is triggered,
a decentralized and collective decision management strategy starts, where each entity does its
best by offering its ability to handle specific problems. For instance, if the route is blocked, the
driver can change the route path making a new plan, passengers can change their pick-up points
to adapt to the new route, or, if this is not possible, the system can provide alternative solutions.
Moreover, when an intra-ensemble adaptation can not be solved, inter-ensembles adaptation can
be performed.

3 Collective Adaptation Approach

In this Section we present the approach for modeling and execution service-based CASs, as used
in the implementation of DeMOCAS.

Application Model. DeMOCAS exploits a design for adaptation model, called Domain Ob-
ject, defined with the purpose of modeling and executing service-based CASs. The model allows
for the application of advanced techniques for dynamic adaptation (both local and collective),
through specific constructs. Briefly, the system entities are modeled as DOs. Each DO imple-
ments its own behaviour (the core process), as well as the services (fragments) it provides. Both
of them can be specified only partially, by defining abstract activities specified by their goals. At
runtime, when the DO knows more about the context in which he is running, abstract activities
are automatically refined with (one or a composition of) available fragments provided by other
DOs. This also allows a DO to span its knowledge about the operational environment. Thus, the
adaptive system results in a dynamic network of DOs. Moreover, over this dynamic network,
ensembles are modeled as groups of autonomous DOs sharing common goals. For collective
adaptation purposes, which are required to deal with adaptation needs spanning over the scope
of a single DO, the model provides a set of solvers and handlers. While solvers model the ability
of a DO to handle one or more issues, handlers are used to capture issues, during the nominal
execution of a DO, and to trigger the appropriate solver.

Application Execution. As already introduced, DeMOCAS implements and shows the applica-
tion of local and collective adaptations. The first one deals with the postponement of the concrete
implementation of a service to the runtime phase (i.e., when the context is known). This kind of
adaptation can be performed autonomously by a DO. The second, instead, is necessary to deal
with unexpected changes in the environment and unpredictable behavior of the systems users
and entities. For this kind of adaptation, a collaboration between DOs is required.

Local adaptation is performed through the refinement of abstract activities, by exploiting ad-
vanced techniques for dynamic and incremental service composition [1]. For instance, in Figure
1 we can see the process model of the Urban Mobility System DO, in which the abstract ac-
tivity UMS CalculateTripAlternatives is defined. The specification of this activity is left
to the runtime, when the available multi-modal planners exposing services for journeys planner
are known. In the process execution view, we can see that a fragment has been injected in place
of the abstract activity, and it is under execution. Moreover, through the refinement process, en-
sembles are formed. In the mobility domain, for instance, an ensemble can be made by the driver
of a bus, its specific route and the passengers.



Fig. 1: Abstract Activities Refinement.

Collective Adaptation comes into play to handle unpredictable changes, which usually affect
different running entities. As a consequence, adaptation must be collective, for making the sys-
tem resilient and avoid a halt. The collective adaptation is performed by exploiting the handlers
and solvers constructs, and by associating a MAPE (Monitor, Analyze, Plan, Execute) loop [4]
to each DO. By monitoring the environment, handlers can both raise and–or catch issues. When
an handler in a DO catches an issue, it calls the respective solver. A solver can solve the issue, or
forward it outside the DO, if it is not able to provide a solution. In this case, a recursive proce-
dure is triggered, leading to the construction of an issue resolution tree (as in Figure 2) in order to
find a solution, if any. The chosen solution (the best one is selected in case of multiple solutions
are available) will represent a path on the issue resolution tree. Moreover, it will be given by
the union of the contributions coming for the solvers of the DOs involved in the resolution pro-
cess. The best solution is eventually committed allowing the system to dynamically adapt and
continue its execution. In Figure 2 we show the Collective Adaptation Viewer of DeMOCAS.
The viewer reports the issue resolution result for the issue Intense Traffic triggered by a
Flexibus Driver, during its route execution. In the left side, all the DOs involved in the issue
resolution process are listed. The issue resolution tree of the Route Manager DO that owns the
solver for the triggered issue, is shown in the right side.

Fig. 2: Collective Adaptation Viewer of DeMOCAS.



4 Implementation

DeMOCAS has been implemented by using Java as programming language (to be executed, Java
8 is required). Then, we used Eclipse as developing IDE and maven for the dependencies devel-
opment and the project organization. From a design point of view, we report the DeMOCAS de-
ployment diagram, in Figure 3. The demonstrator is composed by five modules, namely the Exe-
cution, Adaptation, AI Planning, Presentation and Model modules.

Fig. 3: DeMOCAS Deployment Diagram.

The Presentation module imple-
ments the DeMOCAS GUI, together
with the functionalities allowing the sce-
nario execution to be showed in the
demonstrator interface. The graphical
representation of the application domain
is a map, on which the user can intu-
itively follow the evolution of the UMS
scenario. The Presentation module is
constantly synchronized with the Execu-
tion module, from which it obtains the
details about the scenario execution.

In the Model module, the Parser is
responsible for loading the scenario files

(i.e., the Domain Objects and the Ensembles) from the file system and parse it. The Process
Model defines the basic building blocks for a process definition (e.g., input, output and abstract
activities), while the Model, Entity and Ensemble Managers, are essentially devoted to handle
the models, entities and ensembles life-cycles.

The Execution module comes into play once the scenario, modeled in terms of DOs, has been
loaded and displayed. The Process Engine is in charge of simulating the execution of the core
processes of the running DOs instances, by performing all the corresponding activities. When
runtime problems occur, the Problem Handler creates requests for the Adaptation module.

The Adaptation module is called by the Process Engine. When it must tackle the refinement
of an abstract activity (local adaptation), as well as an issue resolution (collective adaptation),
it uses the Local Adaptation Manager and the Collective Adaptation Manager, respectively.
The Local Adaptation Manager is responsible for deriving the planning domain by driving the
fragments selection and ranking (see [1]), according to the goal of the abstract activity and the
specific execution context. The Collective Adaptation Manager runs the collective adaptation al-
gorithm, for the issue that has been caught, by triggering the issue resolution procedure spanning
different entities and ensembles.

The AI Planning module sustains the local adaptation of DOs, by supporting the refinement
of abstract activities. It is in charge of managing the refinement procedure as an AI planning
problem (Planner), providing the (composition of) fragments to be injected (Composer).

References

[1] A. Bucchiarone, A. Marconi, C. A. Mezzina, M. Pistore, and H. Raik. On-the-fly adaptation of dynamic
service-based systems: Incrementality, reduction and reuse. In Service-Oriented Computing - 11th
International Conference, ICSOC 2013, pages 146–161, 2013.

[2] A. Bucchiarone, M. De Sanctis, A. Marconi, M. Pistore, and P. Traverso. Design for adaptation of
distributed service-based systems. In Service-Oriented Computing - 13th International Conference,
ICSOC 2015, Proceedings, pages 383–393, 2015.

[3] A. Bucchiarone, M. De Sanctis, A. Marconi, M. Pistore, and P. Traverso. Incremental composition for
adaptive by-design service based systems. In IEEE 23rd International Conference on Web Services,
San Francisco, USA, June 27 - July 2, 2016 (To Appear), 2016.

[4] IBM. An architectural blueprint for autonomic computing. Technical report, IBM, 2006.


