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Abstract. Nowadays, users can count on a large amount of mobility services of-
fering disparate functionalities and providing all needed information. Yet, from a
user perspective, properly exploiting the available mobility services to organize
journeys meeting personal expectations, is becoming a complex task. Indeed, dis-
cover and select the appropriate services in an open and constantly expanding
domain, is a challenging and time-consuming task. We claim that a uniform and
easy way for exploiting these services while moving around, getting accurate and
personalized information is still missing. In this paper we propose a platform for
the definition of value-added mobility services by (i) enhancing interoperability
among the existing services, (ii) supporting their execution via run-time adapta-
tion, (iii) through the definition of multi-channel front-end applications. On top of
the platform, we have implemented and evaluated a world-wide travel assistant.

1 Introduction

Today, a multitude of applications offering flexible, dynamic and personalized mobil-
ity services to users are available in the mobility domain. These services are designed
independently from each other and made available through a large variety of differ-
ent technologies (e.g., web pages, mobile apps). They provide solutions that are frag-
mented, limited, and that have a partial coverage (e.g., only planning, only booking)
of the overall journey. For instance, Rome2Rio 1 is a world-wide multi-modal jour-
ney planner, that offers traveling solutions between two given locations, but it is not
consistently integrated in the (local) mobility offer of a city (i.e., local bus schedules).
Viaggia Trento 2, instead, is an accurate local multi-modal planner for the city of Trento.
In this context, often the users must interact with different applications to accomplish
a journey. This makes the benefits of having multiple and accurate mobility services
a drawback instead of an added value for the users. To overcome these limits and to
leverage on the potentialities of the available services, we need a systemic and general
approach dealing in a uniform way with services of an open and heterogeneous context.
In this way, we can facilitate services integration and interoperability.

In this paper, we present a service delivery platform providing methods and tech-
niques to design and release adaptive service-based applications. The platform capital-
izes on the achievements and findings of our research in the last years. In particular,
this work represents the combination of the following results: (1) a design for adapta-
tion approach supporting the development, deployment and execution of service-based
systems operating in dynamic environments [5, 6]; (2) a comprehensive framework for

1 https://www.rome2rio.com/ 2 http://www.smartcommunitylab.it/apps/viaggia-trento/



automated service composition [4] that allows for context-aware service adaptation, and
(3) a set of implemented software components and prototypes [1, 9]. To show the poten-
tiality offered by the platform, we implemented a world-wide travel assistant (ATLAS)
able to provide accurate and context-aware traveling solutions.

In the rest of the paper we discuss the challenges behind this work, we presents all
the details of our service delivery platform and its usage, and we report the experimental
validation of the platform.

2 Challenges and Application Scenario

Nowadays, users can count on a large amount of mobility services. They may differ de-
pending on the offered functionalities, the targeted users, or the provider. In particular,
there are journey planners (e.g., Rome2Rio, Google Transit 3) for finding traveling so-
lutions between two or more given locations. Then, specific mobility services are those
referring to specific transport modes (e.g., CityBikes 4 focuses exclusively on bike shar-
ing data) or provided by transport companies (e.g., Flixbus 5, Trenitalia 6). Moreover,
an emerging trend is that of shared mobility services that are based on the shared use
of vehicles, bicycles, or other means (e.g., Bla Bla Car 7). Mobility services also differ
in their geographic coverage. For instance, while Google Transit is a global planner,
since it can be used for planning all around the world, ViaggiaTrento is a local planner
for the city of Trento. The transport modes coverage, instead, measures the number of
different transport means handled by mobility services (i.e., single mode and multiple
mode). For instance, Flixbus and Trenitalia refer to a single transport mode, namely bus
and train. To the contrary, journey planners usually consider different transport modes.
Furthermore, both services dealing with one or a few transport modes and services hav-
ing a local coverage are characterized by a high accuracy of the provided data. To the
contrary, the more global are the services, the more they tend renounce accuracy. Fo-
cusing on cities, we can observe that there is a lot of disparate local services, which are
specific for a few transport means and very accurate. However, this implies that, while
moving around and changing their context, users need to discover and exploit the re-
spective services (and applications) in each city. To sum up, besides the huge amount of
mobility services available up today, it is still missing for the users the possibility of get-
ting context-aware, accurate and personalized travel solutions while moving around,
without using different applications. In this context, there is no need for yet-another-
mobility-app. Our goal, instead, is to provide a solution for enhancing mobility services
interoperability through their runtime and context-aware discovery and composition, to
exploit their potentialities and fill their gaps.

Application scenario. Sara is living in Trento. She wants to visit Vienna, in Austria.
ViaggiaTrento does not give her any results, being Vienna out of region, so she opens the
Trenitalia mobile app and she starts planning. Unlikely, the founded solutions implies
at least two changes, and she does not like the idea. Sara thinks that a rideshare or a bus
solution would be also less expensive, if available. So she checks for both a BlaBlaCar
ride and a Flixbus travel. Finally, she founds a cheap and direct solution among the
ones given by Flixbus, and she books it. For organizing her travel, Sara has used four
different mobility apps, by relying on her knowledge of services, without any support.
3 https://maps.google.com/landing/transit/index.html 4 https://www.citybik.es/
5 https://www.flixbus.com/ 6 http://www.trenitalia.com/ 7 https://www.blablacar.com



3 System Implementation

In this Section, we present our service delivery platform and a world-wide personAlized
TraveL AssiStant – ATLAS developed on top of it. ATLAS consists in (i) a demonstrator
showing the system’s models and its execution and evolution through automatic runtime
adaptation, and (ii) a Telegram 8 chat-bot, for the interaction with the users. We remark
that ATLAS exploits real-world mobility services exposed as open APIs, which are
wrapped as domain objects to be effectively part of the system.

3.1 Adaptive Service-based Systems through Domain Objects

The Domain Object Model [5, 6] has been built to satisfy the need for service-based ap-
plications adaptable by-design. A domain object represents a uniform way to model in-
dependent, heterogeneous, and open services such that they can be easily interconnected
thus enhancing services interoperability. Each domain object defines the behavior of the
service it models–core process (e.g., BlaBlaCar ride-sharing), and the functionalities it
provides–fragments (e.g., offer/require a car ride). Unlike traditional services, domain
objects allow the partial specification of the expected behavior of a service by defining
abstract activities. These activities are defined in terms of the goal they need to achieve
(e.g., organize a journey). When, at runtime, abstract activities need to be executed,
they can be refined according to the fragments offered by other domain objects, thus
allowing the goal to be reached. Indeed, fragments represent executable processes that
can be dynamically discovered, received and executed by a domain object.

While abstract activities goals are defined at design time at a conceptual level, the
need for refining them arises at runtime, triggering real services interoperability. Indeed,
only during the execution the system can discover and select the services effectively im-
plementing the functionalities it needs, in the current context (i.e., a specific city). For
example, only for users planning journeys starting from Trento, it makes sense to pro-
vide them the functionalities of the ViaggiaTrento app. Also fragments can be partially
specified. In this way, their execution relies also on fragments provided by other do-
main objects, thus enabling a chain of refinements (as in Figure 2). The refinement is
performed through the application of advanced techniques for dynamic and incremen-
tal service composition [3] based on AI planning. We refer to [6] for details on the
execution of adaptive systems via dynamic interactions among domain objects.

3.2 Domain Object-Based Platform

The platform is organized in three main layers, as shown in Figure 1. The Enablers
leverage on our previous results on the adaptive by-design wrapping of (mobility) ser-
vices [5, 6]. Developers can exploit and wrap up as domain objects the available ser-
vices in the mobility domain. Besides the design of mobility services, enablers allow
also for their runtime operation, as we will see further on. The Mobility Services layer
exposes the functionalities implemented or facilitated by the Enablers. These services
can exploit and/or combine into value-added services the functionalities of the services
previously wrapped up and made available by the Enablers (i.e., services for user profil-
ing, planning, booking, monitoring of journeys, etc.). The key idea is that the platform

8 https://telegram.org/



is open to continuous extensions with new services as domain objects. Their function-
alities can thus be exploited in a transparent way to provide value-added services. All
the platform mobility services can be eventually provided to final users through a range
of multi-channels front-end applications that constitute the Front-end layer. These can
be mobile or desktop applications, and they can be independent or rely on existing ser-
vices (e.g., chat bots). The runtime operation of the services relies on different enablers.
Domain objects processes are executed by the Process Engine. It manages service re-
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Fig. 1: Domain Object-based Platform.

quests among communicating processes and, when needed, it sends requests for domain
objects instantiation to the Domain Objects Manager. In this way, correlations among
processes are defined. During the normal execution, abstract activities can be met. They
need to be refined with one or a composition of fragments modeling services function-
alities. To this aim, the process engine sends a request for abstract activity refinement
to the Refinement Handler component that is in charge of defining the corresponding
adaptation problem. It defines the problem domain by selecting the proper fragments
driven by the abstract activity’s goal. The adaptation problem is submitted to the Adap-
tation Manager that translates it into a planning problem for the AI Planner component,
which will send back a plan that can be injected into the abstract activity being refined.

3.3 Travel Assistant Implementation

In this Section, with the platform in mind, we detail ATLAS travel assistant 9, and how
applications can be realized on top of our platform. To realize a world-wide travel as-
sistant able to provide to the users the proper mobility services in the specific context(s)
of their journeys, we selected real-world mobility services exposed as open APIs. We
identified their behavior and functionalities and their input and output data. Finally,
we wrapped them up as domain objects to be stored in the platform knowledge base.
For instance, we wrapped Rome2Rio and Google Transit as global journey planners
and ViaggiaTrento as local planner, for the city of Trento. Combining the geographical
coverage of global planners with the accuracy of local planners is a concrete example
9 ATLAS is available here: https://github.com/das-fbk/ATLAS-Personalized-Travel-Assistant.



of services interoperability promoted by our platform. Other examples are Travel for
London 10 as local planner, BlaBlaCar as ridesharing service, CityBikes as bike sharing
services applying to about 400 cities, Trentino Trasporti 11 for the public transportation
in the Trentino region. Being defined as domain objects, all these services can now be
executed, automatically composed and adapted by the Enablers of the platform.

At the Mobility Services platform level, instead, we can find the Travel Assistant
defined as a value-added service leveraging on the services available in the system. Its
main features are the following: (i) given a user planning request, it is able to decide be-
tween a local or a global planning solution; (ii) given the planners responses, it defines
the better way to show this responses to the user (e.g., a list of travel alternatives, a mes-
sage); (iii) given the user selection, the travel assistant is able to identify the transport
means in the legs making the entire solution. In this way, it can incrementally provide
to the user specific functionalities and context-aware information for her journey. We
emphasize here that the more (mobility) services are wrapped up and stored in the sys-
tem’s knowledge base, the more responsive and accurate the travel assistant will be.
Finally, among the multi-channel front-ends that can be defined on top of the platform,
we realized ATLAS as a Telegram chat-bot, exploiting the Telegram’s open API.

Executing ATLAS. In Figure 2, we report examples of chains of incremental refine-
ments, from the execution of the scenario in Section 2. The execution starts from the
core process of ATLAS, modeling the chat-bot started by Sara. We focus on the refine-
ment of the Plan Journey abstract activity, whose goal consists in finding a travel
plan. The refinement generates the following steps.

Step 1. The fragment PlanJourney of the Travel Assistant is selected and injected in
the process of ATLAS. It allows Sara to insert the source and destination locations and
to send a journey plan request. The activities Plan Request and Plan Response

of this fragment model the communication between it and its core process, where the
request is handled. In our scenario, being the destination Vienna, the Travel Assistant
will go for a global plan, by executing a fragment from the Rome2Rio domain object.

Step 2. To properly show the travel alternatives to the user, an appropriate data vi-
sualization pattern must be selected, based on the data format (e.g., a list, a mes-
sage). This is defined at runtime, by the Data Viewer domain object providing the
DefineDataViewerPattern fragment for this purpose. Thus, Sara receives the list
of the found travel alternatives satisfying her requirements.

Step 3. Sara selects her preferred alternative (suppose the first one, a multi-modal so-
lution made by a train and a bus travels). Based on her choice, the Define Journey

Legs abstract activity is refined with the HandleJourneyLegs fragment, which de-
fines the goal for the Specialize Journey abstract activity, whose refinement allows
the Travel Assistant to find the proper fragments for each journey leg.

Step 4. The last step shows a composition of fragments provided by the transport com-
panies involved in the legs of the user selection (e.g., Sudtirol Alto Adige and Hello).
Their execution provides to Sara the proper solutions, from the two companies.

In conclusion, this execution example exhibits the bottom-up nature of the approach,
from grounding services till the user process. This happens in a completely transparent
way for the user that interacts with only one application, ATLAS.

10 https://api.tfl.gov.uk/ 11 http://www.ttesercizio.it/



STEP 1: PLAN FOR G1

STEP 2: PLAN FOR G4 STEP 3: PLAN FOR G5
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Fig. 2: ATLAS: an example of the system execution via incremental and dynamic refinements.
For each fragment, we specify its name and the domain object which it belongs to.

4 Evaluation

To evaluate the effectiveness and efficiency of our platform, we have run a set of experi-
ments based on real-world problems 12. We ran ATLAS using a dual-core CPU running
at 2.7GHz, with 8Gb memory. To show its feasibility, we evaluate: (1) How long it
takes to wrap up real services as domain objects; (2) How much automatic refinement
(service selection and composition) affects the execution of ATLAS. Based on our ex-
perience, we can argue that to wrap a real service as a domain object, the developer
needs (i) to master the domain objects modeling notation and (ii) to understand the
service behavior, its functionalities, its input/output data format and how to query it.
Wrapping time clearly changes between experienced and non-expert developers. From
our analysis, it ranges from 4 to 6 hours, considering average complex services. More-
over, it is also relevant to claim that this activity is done una tantum: after wrapping, the
service is seamlessly part of the platform. To evaluate the automatic refinement, we col-
lected both the adaptation and mobility services execution statistics, to understand how
long they take, on average, to be executed. We carried out an experiment considering
10 runs of ATLAS handling various end-users’ requests. For each run, more than 150
refinement cases were generated. As shown in Figure 3, the majority of the problems
have a complexity in-between 0 and 19 transitions, while the most complex problems
range from 80 to 100 transitions. Notice that the occurrence of complex problems is
relatively rare. For all the runs, only 3% of the problems require more than 0.5 secs to
12 The specification of ATLAS used for the evaluation contains 14 domain object models,
17 fragment models and 12 types of domain properties Domain properties are high-level rep-
resentations of the domain concepts, and they are used to evaluate the conditions under which
each fragment can be exploited (for details refer to [5, 6]).



be solved, and the worst case is anyhow below 1.5 secs. To measure how much auto-
matic refinement influences the execution of ATLAS, we compared the data about the
time required for adaptation with the response time of real-world services wrapped in
ATLAS. As expected, Figure 4 shows that problems with the most complex planning
domain take more planning time than problem with less complexity. In the worst case,
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the adaptation requires a time close to 1.5 secs, while the services response time ranges
from 0.23 to 3.20 secs. Moreover, the adaptation takes more time for the most complex
problems that are the less frequent to occur. We argue that the automatic refinement
responsiveness is equivalent to that of mobility services.

5 Related Work and Conclusion

Open services are easy to understand and to access services and can be exploited to de-
velop applications or new value-added services. Web APIs are the most common way
to specify them. To overcome the limitations of semantic web services (i.e., the use of
non-standard languages for description) a model for Linked Open Services has been



introduced in [7] in which services are viewed as RDF ”prosumers”. With the rise in
popularity of web APIs, platforms for their management and customization, called API
management platform, have been provided. However, while advances in web services
and their composition enable automation and reuse, new challenges have emerged in the
case of APIs. The service developer requires sound understanding of the different ser-
vice types, access-methods, and input/output data formats [8] (e.g., XML, JSON, SOAP,
HTTP). ServiceBase [2] proposes a Unified Services Representation Model where com-
mon service-related low-level logic can be abstracted and reused by other applications
developer. With it a set of APIs have been implemented that expose a common and high-
level interface for integrating heterogeneous services in a simplified manner. Organiza-
tions like Mashery 13 and Apigee 14 are building on these trends to provide platforms
for the management of APIs. For instance, ProgrammableWeb 15 now has more than
10,000 API in its directory. However, despite advances in SOA, complete solutions for
open services management are yet required. There is still a need to make services easy
to understand and to access. Our service delivery platform is an attempt to solve the pre-
vious open issues and to provide a complete solution for open services management and
exploitation. The core idea is to factorize the capabilities offered by service providers
as a set of building blocks (i.e., domain-objects), which can be easily combined to give
place to composite services that can be published and exploited.

In conclusion, we have presented a service delivery platform providing engineering
methods and techniques to design and release adaptive service-based applications. We
have shown how applications can be realized on top of it exploiting the functionali-
ties provided by real-world services. As stated, our platform requires that services are
previously wrapped as domain-objects to be used. Although this may seem a limita-
tion, we can argue that the service wrapping activity can be performed as a collective
co-development process, in a crowd-sourcing style. Furthermore, open data can help
to overcome the limitations imposed by services that are not open. Extensions of our
platform refers to the inclusion of functionalities provided by smart things, in the IoT
sense, and the support for other forms of run-time adaptation.
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